-
Volume 65,
Issue Pt_12,
2015
Volume 65, Issue Pt_12, 2015
- NEW TAXA
-
- Proteobacteria
-
-
Luteimonas soli sp. nov., isolated from farmland soil
A yellow-pigmented bacterial strain, designated Y2T, was isolated from farmland soil in Bengbu, Anhui province, China. Cells of strain Y2T were Gram-stain-negative, strictly aerobic, non-motile and rod-shaped. Strain Y2T grew optimally at pH 7.0, 30 °C and in the presence of 2 % (w/v) NaCl. The DNA G+C content was 68.9 mol%. The major fatty acids (>5 %) were iso-C15 : 0, iso-C17 : 0, summed feature 9 (C16 : 0 10-methyl and/or iso-C17 : 1ω9c), iso-C11 : 0 3-OH and iso-C11 : 0. The major respiratory quinone was ubiquinone-8 (Q-8), and the major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Phylogenetic analysis of the 16S rRNA gene sequences showed that strain Y2T was most closely related to Luteimonas mephitis B1953/27.1T (99.1 % 16S rRNA gene sequence similarity), followed by Luteimonas lutimaris G3T (98.6 %), Luteimonas abyssi XH031T (96.2 %) and Luteimonas aquatica RIB1-20T (96.0 %). Strain Y2T exhibited low DNA–DNA relatedness with Luteimonas mephitis B1953/27.1T (43.6 ± 0.5 %) and Luteimonas lutimaris G3T (43.9 ± 2.1 %). On the basis of phenotypic, genotypic and phylogenetic evidence, strain Y2T represents a novel species of the genus Luteimonas, for which the name Luteimonas soli sp. nov. is proposed. The type strain is Y2T ( = ACCC 19799T = KCTC 42441T).
-
-
-
Novel environmental species isolated from the plaster wall surface of mural paintings in the Takamatsuzuka tumulus: Bordetella muralis sp. nov., Bordetella tumulicola sp. nov. and Bordetella tumbae sp. nov.
More LessTen strains of Gram-stain-negative, non-spore-forming, non-motile coccobacilli were isolated from the plaster wall surface of 1300-year-old mural paintings inside the stone chamber of the Takamatsuzuka tumulus in Asuka village (Asuka-mura), Nara Prefecture, Japan. Based on 16S rRNA gene sequence analysis of the isolates, they belonged to the proteobacterial genus Bordetella (class Betaproteobacteria) and could be separated into three groups representing novel lineages within the genus Bordetella. Three isolates were selected, one from each group, and identified carefully using a polyphasic approach. The isolates were characterized by the presence of Q-8 as their major ubiquinone system and C16 : 0 (30.0–41.8 %), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c; 10.1–27.0 %) and C17 : 0 cyclo (10.8–23.8 %) as the predominant fatty acids. The major hydroxy fatty acids were C12 : 0 2-OH and C14 : 0 2-OH. The DNA G+C content was 59.6–60.0 mol%. DNA–DNA hybridization tests confirmed that the isolates represented three separate novel species, for which the names Bordetella muralis sp. nov. (type strain T6220-3-2bT = JCM 30931T = NCIMB 15006T), Bordetella tumulicola sp. nov. (type strain T6517-1-4bT = JCM 30935T = NCIMB 15007T) and Bordetella tumbae sp. nov. (type strain T6713-1-3bT = JCM 30934T = NCIMB 15008T) are proposed. These results support previous evidence that members of the genus Bordetella exist in the environment and may be ubiquitous in soil and/or water.
-
-
-
Roseomonas oryzicola sp. nov., isolated from the rhizosphere of rice (Oryza sativa L.)
More LessA Gram-stain-negative, coccobacilli-shaped bacterium, designated YC6724T, was isolated from the rhizosphere of rice in Jinju, Korea. The taxonomy of strain YC6724T was studied using a polyphasic approach. Strain YC6724T grew optimally at 30 °C and pH 7.0–8.0. Comparative 16S rRNA gene sequence analyses showed that the strain was most closely related to Roseomonas soli 5N26T (98.4 % 16S rRNA gene sequence similarity), Roseomonas lacus TH-G33T (97.3 %) and Roseomonas terrae DS-48T (97.3 %). Sequence similarities with other species of the genus Roseomonas with validly published names were lower than 94.0 %. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain YC6724T formed a distinct phyletic lineage within the genus Roseomonas. Strain YC6724T had DNA–DNA relatedness values of 16.6 %, 44.0 % and 33.2 % with R. soli KACC 16376T, R. terrae KACC 12677T and R. lacus KACC 11678T, respectively. The predominant fatty acids of strain YC6724T were C18 : 1ω7c and/or C18 : 1ω6c, C16 : 0 and C18 : 1 2-OH. The polar lipid profile contained phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, an unknown aminolipid and two unknown lipids. The G+C content of the genomic DNA was 70.5 mol% and the major quinone was Q-10. Strain YC6724T contained spermidine as the major polyamine. On the basis of phenotypic, chemotaxonomic and molecular data, it is clear that strain YC6724T represents a novel species of the genus Roseomonas, for which the name Roseomonas oryzicola sp. nov. is proposed. The type strain is YC6724T ( = KCTC 22478T = NBRC 109439T).
-
-
-
Marinobacter confluentis sp. nov., a lipolytic bacterium isolated from a junction between the ocean and a freshwater lake
More LessA Gram-stain-negative, motile, aerobic and rod-shaped bacterium, designated HJM-18T, was isolated from the place where the ocean and a freshwater lake meet at Hwajinpo, South Korea, and subjected to a taxonomic study using a polyphasic approach. Strain HJM-18T grew optimally at 30 °C, at pH 7.0–8.0 and in the presence of 1.0–3.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences showed that strain HJM-18T belonged to the genus Marinobacter. Strain HJM-18T exhibited 16S rRNA gene sequence similarity values of 97.05–98.22 % to the type strains of Marinobacter algicola, Marinobacter flavimaris, Marinobacter adhaerens, Marinobacter salarius, Marinobacter salsuginis, Marinobacter guineae and Marinobacter gudaonensis and of 93.21–96.98 % to the type strains of the other species of the genus Marinobacter. Strain HJM-18T contained Q-9 as the predominant ubiquinone and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and C18 : 1ω9c as the major fatty acids. The major polar lipids detected in strain HJM-18T were phosphatidylethanolamine, phosphatidylglycerol and one unidentified aminophospholipid. The DNA G+C content was 58 mol% and the mean DNA–DNA relatedness values with the type strains of the seven phylogenetically related species of the genus Marinobacter were 10–27 %. Differential phenotypic properties, together with phylogenetic and genetic distinctiveness, revealed that strain HJM-18T is separated from recognized species of the genus Marinobacter. On the basis of the data presented, strain HJM-18T represents a novel species of the genus Marinobacter, for which the name Marinobacter confluentis sp. nov. is proposed. The type strain is HJM-18T ( = KCTC 42705T = NBRC 111223T).
-
-
-
Bradyrhizobium kavangense sp. nov., a symbiotic nitrogen-fixing bacterium from root nodules of traditional Namibian pulses
More LessEight strains of symbiotic bacteria from root nodules of local races of cowpea (Vigna unguiculata) and Bambara groundnut (Vigna subterranea) grown on subsistence farmers’ fields in the Kavango region, Namibia, were previously characterized and identified as a novel group within the genus Bradyrhizobium. To clarify their taxonomic status, these strains were further characterized using a polyphasic approach. In phylogenetic analysis of the 16S rRNA gene sequence the novel group was most closely related to Bradyrhizobium iriomotense EK05T and Bradyrhizobium ingae BR 10250T, and to ‘Bradyrhizobium arachidis’ CCBAU 051107 in the ITS sequence analysis. Phylogenetic analysis of concatenated glnII-recA-rpoB-dnaK sequences placed the strains in a lineage distinct from named species of the genus Bradyrhizobium. The species status was validated by results of DNA–DNA hybridization. Phylogenetic analysis of nifH and nodC genes placed the novel strains in a group with ’B. arachidis’ CCBAU 051107. The combination of phenotypic characteristics from several tests including carbon source utilization and antibiotic resistance could be used to differentiate representative strains from recognized species of the genus Bradyrhizobium. Novel strain 14-3T induces effective nodules on Vigna subterranea, Vigna unguiculata, Arachis hypogaea and Lablab purpureus. Based on the data presented, it is concluded that the strains represent a novel species of the genus Bradyrhizobium, for which the name Bradyrhizobium kavangense sp. nov. is proposed. The type strain is 14-3T [ = DSM 100299T = LMG 28790T = NTCCM 0012T (Windhoek)]. The DNA G+C content of strain 14-3T is 63.8 mol% (T m ).
-
-
-
Pelistega suis sp. nov., isolated from domestic and wild animals
Biochemical and molecular genetic studies were performed on three novel Gram-stain-negative, catalase- and oxidase-positive, bacilli-shaped organisms isolated from the tonsils of two pigs and one wild boar. The micro-organism was identified as a species of the genus Pelistega based on its cellular morphological and biochemical tests. The closest phylogenetic relative of the novel bacilli was Pelistega indica HM-7T (98.2 % 16S rRNA gene sequence similarity to the type strain). groEL and gyrB sequence analysis showed interspecies divergence from the closest 16S rRNA gene phylogenetic relative, P. indica of 87.0.% and 69 %, respectively. The polyamine pattern contains predominantly putrescine and 2-hydroxyputrescine. The major quinone is ubiquinone Q-8 and in the polar lipid profile, phosphatidylethanolamine, phosphatidylglycerol, an unidentified aminolipid and an unidentified lipid are predominant. The novel bacterial isolate can be distinguished from P. indica by several biochemical characteristics, such as the production of l-pyrrolydonil arylamidase but not gamma-glutamyl-transferase, and the utilization of different carbon sources. Based on both phenotypic and phylogenetic findings, the novel bacterium is classified as representing a novel species of the genus Pelistega, for which the name Pelistega suis sp. nov. is proposed. The type strain is 3340-03T ( = CECT 8400T = CCUG 64465T).
-
- Bacteroidetes
-
-
Taeseokella kangwonensis gen. nov., sp. nov., isolated from a freshwater reservoir
More LessA Gram-stain-negative, non-motile and yellow-pigmented bacterium, designated HME8275T, was isolated from freshwater in Korea. The major fatty acids of strain HME8275T were summed feature 3 (comprising C16 : 1ω6c and/or C16 : 1ω7c), C16 : 0 and iso-C15 : 0. The only respiratory quinone was MK-7. Polar lipid analysis showed phosphatidylethanolamine, two unidentified aminolipids, two unidentified aminophospholipids and three unidentified polar lipids. The DNA G+C content of strain HME8275T was 37.6 mol%. A phylogenetic tree based on 16S rRNA gene sequences showed that strain HME8275T formed a lineage within the family Cytophagaceae and was related to Lacihabitans soyangensis HME6675T (92.6 % 16S rRNA gene sequence similarity), Leadbetterella byssophila 4M15T (89.0 %), Fluviimonas pallidilutea TQQ6T (89.7 %) and Emticicia oligotrophica GPTSA100-15T (89.8 %). On the basis of the evidence presented in this study, strain HME8275T represents a novel species of a new genus in the family Cytophagaceae, for which the name Taeseokella kangwonensis, gen. nov., sp. nov. is proposed. The type strain of the type species is HME8275T ( = KACC 16933T = CECT 8198T).
-
-
-
Variovorax gossypii sp. nov., isolated from Gossypium hirsutum
More LessA beige-pigmented bacterial strain (JM-310T), isolated from the healthy internal root tissue of 4-week-old cotton (Gossypium hirsutum, cultivar ‘DES-119’) in Tallassee (Macon county), Alabama, USA, was studied taxonomically. The isolate produced small rod-shaped cells, which showed a Gram-negative staining behaviour. A comparison of the 16S rRNA gene sequence of the isolate revealed 99.2, 98.8, 98.7, 98.7, 98.1 and 97.6 % similarity to the 16S rRNA gene sequences of the type strains of Variovorax paradoxus, Variovorax boronicumulans, Variovorax ginsengisoli, Variovorax soli, Variovorax defluvii and Variovorax dokdonensis, respectively. In phylogenetic trees based on 16S rRNA gene sequences, strain JM-301T was placed within the monophyletic cluster of Variovorax species. The fatty acid profile of strain JM-310T consisted mainly of the major fatty acids C16 : 0, C10 : 0 3-OH and summed feature 4 (iso-C15 : 0 2-OH/C16 : 1ω7c/t). The quinone system of strain JM-310T contained predominantly ubiquinone Q-8 and lesser amounts of Q-7 and Q-9. The major polyamine was putrescine and the diagnostic polyamine 2-hydroxyputrescine was detected as well. The polar lipid profile consisted of the major lipids phosphatidylethanolamine, phosphatidylglycerol, diphospatidylglycerol and several unidentified lipids. DNA–DNA hybridization experiments with V. paradoxus LMG 1797T, V. boronicumulans 1.22T, V. soli KACC 11579T and V. ginsengisoli 3165T gave levels of relatedness of < 70 %. These DNA–DNA hybridization results in addition to differential biochemical properties indicate clearly that strain JM-310T is a member of a novel species, for which the name Variovorax gossypii sp. nov. is proposed. The type strain is JM-310T ( = LMG 28869T = CIP 110912T = CCM 8614T).
-
-
-
Bacteroides caecigallinarum sp. nov., isolated from caecum of an Indonesian chicken
Three strains of anaerobic Gram-stain-negative, short to longer rod-shaped bacteria isolated from the caecum of chicken in Indonesia were studied using a polyphasic taxonomic approach. These strains belonged to the genus Bacteroides, based on sequence analysis of 16S rRNA and hsp60 (groEL) genes, with similarities of 93.2–94.1 and 89.8–90.8 %, respectively, to the closest recognized species, Bacteroides coprocola JCM 17929T. Sugar fermentation and enzyme characteristics, cellular fatty acid profiles, menaquinone profiles and metabolic end products were also investigated. Furthermore, DNA–DNA hybridization studies confirmed that the three novel strains are different from the closest related species. The strains were also found to be distinct from each other on the basis of ribotype profiles. The DNA G+C contents of the three strains were 41.1–41.8 mol%. Based on phenotypic and phylogenetic characteristics, a novel species, Bacteroides caecigallinarum sp. nov., is proposed (type strain C13EG111T = LIPI12-4-Ck773T = JSAT12-4-Ck773T = InaCC B455T = NBRC 110959T).
-
-
-
Tenacibaculum holothuriorum sp. nov., isolated from the sea cucumber Apostichopus japonicus intestine
More LessA novel bacterial strain, designated S2-2T, was isolated from the intestine of a sea cucumber Apostichopus japonicus in Xiapu, Fujian province, China. Strain S2-2T was found to be aerobic, Gram-stain-negative, pale yellow, rod-shaped, oxidase- and catalase-positive. Growth occurred at 15–36 °C (optimum, 25–32 °C), in the presence of 2–7% sea salt (w/v, optimum, 3–5%) and at pH 6–9 (optimum, pH 7.0). The isolate was able to hydrolyse gelatin, casein and DNA, but unable to degrade Tween 20, 40 and 80, starch and cellulose. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain S2-2T represented a member of the genus Tenacibaculum, with highest sequence similarity to Tenacibaculum aiptasiae a4T (96.9% similarity), followed by Tenacibaculum xiamenense WJ-1T (96.5% similarity) and showed lower similarities (93.3–95.9%) with other members of the genus Tenacibaculum. The major cellular fatty acids were summed feature 3 (comprising C16 : 1ω6c/C16 : 1ω7c, 33.8%), iso-C15 : 0 (13.7%), iso-C15 : 1G (8.6%), iso-C15 : 0 3-OH (5.3%) and C15 : 0 3-OH (5.1%). The DNA G+C content of the chromosomal DNA was determined to be 31.8 mol%. The respiratory quinone was determined to be MK-6. Phosphatidylethanolamine, phosphatidylglycerol, one unknown aminophospholipid, one unknown phospholipid, one unknown glycolipid and five unknown lipids were detected as major polar lipids. Hence, the combined genotypic and phenotypic data indicated that strain S2-2T represents a novel species of the genus Tenacibaculum, for which the name Tenacibaculum holothuriorum sp. nov. is proposed. The type strain is S2-2T ( = MCCC 1A09872T = LMG 27758T).
-
-
-
Belliella marina sp. nov., isolated from seawater
More LessA Gram-stain-negative, rod-shaped bacterium, strain SW112T, was isolated from a seawater sample collected from the Indian Ocean. The strain was strictly aerobic and catalase- and oxidase-positive. Strain SW112T grew at 4–42 °C (optimum 30 °C), at pH 5.5–9.5 (optimum pH 7.5) and in the presence of 0–9.0 % (w/v) NaCl (optimum 2.0–3.0 %). The predominant cellular fatty acids were iso-C15 : 0 (29.7 %), iso-C17 : 03-OH (14.3 %) and summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c, 15.1 %). The major menaquinone was menaquinone-7 and the major polar lipid was phosphatidylethanolamine. The genomic DNA G+C content of strain SW112T was 39 mol%. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain SW112T was related to members of the genus Belliella, showing the highest similarity with Belliella aquatica TS-T86Tand Belliella baltica DSM 15883T (96.5 % and 96.4 % sequence similarity, respectively). On the basis of phylogenetic inference and phenotypic characteristics, it is proposed that strain SW112T represents a novel species of the genus Belliella, for which the name Belliella marina sp. nov. is proposed. The type strain is SW112T ( = CGMCC 1.15180T = KCTC 33694T).
-
-
-
Emticicia aquatica sp. nov., a species of the family Cytophagaceae isolated from fresh water
More LessA Gram-staining-negative, non-gliding, orange-pigmented bacterial strain, designated HMF2925T, was isolated from fresh water in Korea. The phylogenetic tree based on 16S rRNA gene sequences showed that strain HMF2925T formed a distinct lineage within the genus Emticicia. Strain HMF2925T was closely related to Emticicia oligotrophica DSM 17448T (95.5 %) and Emticicia ginsengisoli Gsoil 085T (94.1 %). The major fatty acids of strain HMF2925T were summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c), iso-C15 : 0, C16 : 1ω5c and C16 : 0.The major polar lipids of strain HMF2925T were phosphatidylethanolamine, phosphatidylinositol, diphosphatidylglycerol, phosphatidylglycerol, an unidentified glycolipid, two unidentified amino lipids and three unidentified polar lipids. The DNA G+C content of strain HMF2925T was 36.5 mol%. On the basis of the evidence presented in this study, strain HMF2925T represents a novel species of the genus Emticicia, for which the name Emticicia aquatica sp. nov. is proposed. The type strain is HMF2925T ( = KCTC 42574T = CECT 8858T).
-
-
-
Formosa haliotis sp. nov., a brown-alga-degrading bacterium isolated from the gut of the abalone Haliotis gigantea
Four brown-alga-degrading, Gram-stain-negative, aerobic, non-flagellated, gliding and rod-shaped bacteria, designated LMG 28520T, LMG 28521, LMG 28522 and LMG 28523, were isolated from the gut of the abalone Haliotis gigantea obtained in Japan. The four isolates had identical random amplified polymorphic DNA patterns and grew optimally at 25 °C, at pH 6.0–9.0 and in the presence of 1.0–4.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences placed the isolates in the genus Formosa with Formosa algae and Formosa arctica as closest neighbours. LMG 28520T and LMG 28522 showed 100 % DNA–DNA relatedness to each other, 16–17 % towards F. algae LMG 28216T and 17–20 % towards F. arctica LMG 28318T; they could be differentiated phenotypically from these established species. The predominant fatty acids of isolates LMG 28520T and LMG 28522 were summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c), iso-C15 : 1 G and iso-C15 : 0. Isolate LMG 28520T contained menaquinone-6 (MK-6) as the major respiratory quinone and phosphatidylethanolamine, two unknown aminolipids and an unknown lipid as the major polar lipids. The DNA G+C content was 34.4 mol% for LMG 28520T and 35.5 mol% for LMG 28522. On the basis of their phylogenetic and genetic distinctiveness, and differential phenotypic properties, the four isolates are considered to represent a novel species of the genus Formosa, for which the name Formosa haliotis sp. nov. is proposed. The type strain is LMG 28520T ( = NBRC 111189T).
-
-
-
Sphingobacterium suaedae sp. nov., isolated from the rhizosphere soil of Suaeda corniculata
More LessA Gram-stain-negative, non-motile, non-spore-forming bacterium, designated T47T, was isolated from saline soil of the Suaeda corniculata rhizosphere, located on the bank of Wuliangsuhai Lake, Inner Mongolia, northern China. Strain T47T could grow at 10–40 °C (with 30 °C the optimal temperature), pH 6.0–8.0 (optimal pH 6.0) and in the presence of 0–6.0 % (w/v) NaCl [optimal 0–1.0 % (w/v)]. Phylogenetic analysis, based on 16S rRNA gene sequences, revealed that strain T47T formed a stable clade with Sphingobacterium composti 4M24T, Sphingobacterium bambusae IBFC2009T, Sphingobacterium paludis S37T and Sphingobacterium wenxiniae LQY-18T, with the 16S rRNA gene sequence similarities ranging from 91.9–95.4 %. Its major cellular fatty acids contained iso-C15 : 0 (39.9 %), summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c, 23.0 %), C16 : 0 (12.8 %) and iso-C17 : 0 3-OH (9.9 %). MK7 was the major menaquinone. The G+C content of the genomic DNA was 45.5 mol%. Based on the phenotypic, phylogenetic and genotypic characteristics, strain T47T represents a novel species within the genus Sphingobacterium, for which the name Sphingobacterium suaedae sp. nov. is proposed. The type strain is T47T ( = CGMCC 1.15277T = KCTC 42662T).
-
-
-
Hymenobacter terrenus sp. nov., isolated from biological soil crusts
More LessA Gram-stain-negative, non-spore-forming, short rod-shaped, non-motile, light-pink bacterial strain, MIMtkLc17T, was isolated from biological soil crusts collected in Liangcheng, Inner Mongolia. Growth of strain MIMtkLc17T was observed at 2–35 °C and in the presence of 1% (w/v) NaCl. Phylogenetic analysis of 16S rRNA gene sequences showed that sequence similarities between strain MIMtkLc17T and the type strains of species of the genus Hymenobacter ranged from 89.93% to 96.49%. Strain MIMtkLc17T can secrete mass polysaccharide. The major fatty acids of strain MIMtkLc17T were iso-C15 : 0, summed feature 3 (C16 : 1ω7c/C16 : 1ω6c), C16 : 1ω5c and summed feature 4 (iso-C17 : 1 I/anteiso-C17 : 1 B). The sole respiratory quinone was menaquinone MK-7. The G+C content of the chromosomal DNA was 57.8 mol%. The results of phylogenetic, chemotaxonomic and phenotypic characterization indicated that strain MIMtkLc17T can be distinguished from all known species of the genus Hymenobacter and represents a novel species of this genus, for which the name Hymenobacter terrenus sp. nov. is proposed. The type strain is MIMtkLc17T ( = MCCC 1K00507T = KCTC 42636T).
-
-
-
Croceitalea litorea sp. nov., isolated from seashore sand
Strain CBA3205T is a Gram-stain-negative, non-motile and rod-shaped bacterium that was isolated from the seashore sand of Jeju Island in South Korea. Based on the phylogenetic analysis, the most closed related species was Croceitalea eckloniae DOKDO 025T, with 94.8 % sequence similarity for the 16S rRNA gene. Strain CBA3205T was observed to grow optimally at 25–30 °C and at pH 8.5 in the presence of 2–3 % (w/v) NaCl. The major fatty acids of strain CBA3205T were iso-C15 : 0, iso-C15 : 1 G, and iso-C17 : 0 3-OH. The major respiratory quinone was MK-6 and the major polar lipids were two unidentified amino-group-containing phospholipids and an unidentified polar lipid. The G+C content of the genomic DNA of strain CBA3205T was 62.5 mol%. Based on the phenotypic, genotypic and phylogenetic analyses, strain CBA3205T was considered to be a novel species belonging to the genus Croceitalea within the family Flavobacteriaceae, for which the name Croceitalea litorea sp. nov. is proposed. The type strain is CBA3205T ( = KACC 17669T = JCM 19531T).
-
-
-
Alistipes inops sp. nov. and Coprobacter secundus sp. nov., isolated from human faeces
Culture-based study of the faecal microbiome in two adult female subjects revealed the presence of two obligately anaerobic, non-spore-forming, rod-shaped, non-motile, Gram-negative bacterial strains that represent novel species. The first strain, designated 627T, was a fastidious, slow-growing, indole-positive bacterium with a non-fermentative type of metabolism. The strain was characterized by the production of acetic and succinic acids as metabolic end products, the prevalence of iso-C15 : 0 fatty acid and the presence of menaquinones MK-10 and MK-11. The DNA G+C content was found to be 56.6 mol%. The second strain, designated 177T, was capable of fermenting a rich collection of carbohydrate substrates, producing acetic acid as a terminal product. The strain was indole-negative and resistant to bile. The major cellular fatty acids were iso-C15 : 0 and anteiso-C15 : 0 (in a 1 : 1 ratio) and the predominant menaquinone was MK-11. The DNA G+C content was 37.8 mol%. A phylogenomic analysis of the draft genomes of strains 627T and 177T placed these bacteria in the genera Alistipes (family Rikenellaceae) and Coprobacter (family Porphyromonadaceae), respectively.
On the basis of the phenotypic and genotypic properties of strains 627T and 177T, we conclude that these strains from human faeces represent two novel bacterial species, for which the names Alistipes inops sp. nov. (type strain 627T = DSM 28863T = VKM B-2859T) and Coprobacter secundus sp. nov. (type strain 177T = DSM 28864T = VKM B-2857T) are proposed.
-
-
-
Chitinophaga dinghuensis sp. nov., isolated from soil
More LessA Gram-reaction-negative, aerobic, non-motile bacterial strain, DHOC24T, was isolated from the forest soil of Dinghushan Biosphere Reserve, Guangdong Province, PR China. Strain DHOC24T underwent a shape change during the course of culture from long filamentous cells (10–30 × 0.4–0.5 μm) at 2 days to coccobacilli (0.5–1.0 × 0.7–1.0 μm) at 15 days after inoculation. It grew optimally at 28–33 °C and pH 6.5–7.5. The major quinone of strainDHOC24T was MK-7, the main fatty acids were iso-C15 : 0, C16 : 1ω5c and iso-C17 : 0 3-OH and the DNA G+C content was 43.1 mol%. On the basis of 16S rRNA gene sequence analysis, the strain was found to be affiliated with members of the genus Chitinophaga, but was clearly separated from established species of the genus. Strain DHOC24T was most closely related to Chitinophaga jiangningensis JN53T (98.3 % 16S rRNA gene sequence similarity) and Chitinophaga terrae KP01T (97.9 %). DNA–DNA hybridization study showed relatively low relatedness values (32.1 %) of strain DHOC24T with C. jiangningensis JN53T. The phenotypic, chemotaxonomic and phylogenetic data showed that strain DHOC24T represents a novel species of the genus Chitinophaga, for which the name Chitinophaga dinghuensis sp. nov. is proposed. The type strain is DHOC24T ( = CGMCC 1.12995T = DSM 29821T).
-
-
-
Aurantivirga profunda gen. nov., sp. nov., isolated from deep-seawater, a novel member of the family Flavobacteriaceae
A Gram-stain-negative, aerobic, proteorhodopsin-containing, orange, rod-shaped bacterium, designated SAORIC-234T, was isolated from deep seawater in the Pacific Ocean. 16S rRNA gene sequence analysis revealed that the strain could be affiliated with the family Flavobacteriaceae of the phylum Bacteroidetes and shared less than 94.6 % similarity with other species of the family with validly published names. The phenotypic characteristics of this novel isolate, such as growth properties and enzyme activities, could be differentiated from those of other species. The strain was non-motile, oxidase-positive and catalase-negative. The G+C content of the genomic DNA was determined to be 34.8 mol% and menaquinone-6 (MK-6) was the predominant isoprenoid quinone. The predominant fatty acids were iso-C15 : 0, iso-C15 : 1 G, iso-C16 : 0 3-OH, iso-C17 : 0 3-OH and iso-C15 : 0 3-OH. The major polar lipids comprised phosphatidylethanolamine, three unknown aminolipids and three unknown lipids. On the basis of the taxonomic data collected in this study, it was concluded that strain SAORIC-234T represents a novel genus and species in the family Flavobacteriaceae, for which the name Aurantivirga profunda gen. nov., sp. nov. is proposed. The type strain of the type species, Aurantivirga profunda sp. nov., is SAORIC-234T ( = NBRC 110606T = KACC 18400T).
-
-
-
Filimonas endophytica sp. nov., isolated from surface-sterilized root of Cosmos bipinnatus
More LessA Gram-stain-negative, yellow, motile by gliding, filamentous bacterium, designated SR 2-06T, was isolated from surface-sterilized root of garden cosmos. 16S rRNA gene sequence analysis indicated that SR 2-06T was related most closely to Filimonas lacunae YT21T of the family Chitinophagaceae at a sequence similarity of 96.90 %, while levels of similarity to other related taxa were less than 93.08 %. Strain SR 2-06T exhibited similar features to F. lacunae in that it contained MK-7 as the major respiratory quinone, and iso-C15 : 1 G, iso-C15 : 0 and a summed feature consisting of C16 : 1ω6c and/or C16 : 1ω7c as the major fatty acids. However, strain SR 2-06T was distinguished from F. lacunae using a combination of physiological and biochemical properties. The cellular polar lipids were phosphatidylethanolamine, unknown aminophospholipids, unknown aminolipids, an unknown phospholipid and unidentified polar lipids. The DNA G+C content was 46.0 mol%. The phenotypic and phylogenetic evidence clearly indicates that strain SR 2-06T represents a novel species of the genus Filimonas, for which the name Filimonas endophytica sp. nov. is proposed. The type strain is SR 2-06T ( = KCTC 42060T = JCM 19844T).
-
Volumes and issues
-
Volume 75 (2025)
-
Volume 74 (2024)
-
Volume 73 (2023)
-
Volume 72 (2022 - 2023)
-
Volume 71 (2020 - 2021)
-
Volume 70 (2020)
-
Volume 69 (2019)
-
Volume 68 (2018)
-
Volume 67 (2017)
-
Volume 66 (2016)
-
Volume 65 (2015)
-
Volume 64 (2014)
-
Volume 63 (2013)
-
Volume 62 (2012)
-
Volume 61 (2011)
-
Volume 60 (2010)
-
Volume 59 (2009)
-
Volume 58 (2008)
-
Volume 57 (2007)
-
Volume 56 (2006)
-
Volume 55 (2005)
-
Volume 54 (2004)
-
Volume 53 (2003)
-
Volume 52 (2002)
-
Volume 51 (2001)
-
Volume 50 (2000)
-
Volume 49 (1999)
-
Volume 48 (1998)
-
Volume 47 (1997)
-
Volume 46 (1996)
-
Volume 45 (1995)
-
Volume 44 (1994)
-
Volume 43 (1993)
-
Volume 42 (1992)
-
Volume 41 (1991)
-
Volume 40 (1990)
-
Volume 39 (1989)
-
Volume 38 (1988)
-
Volume 37 (1987)
-
Volume 36 (1986)
-
Volume 35 (1985)
-
Volume 34 (1984)
-
Volume 33 (1983)
-
Volume 32 (1982)
-
Volume 31 (1981)
-
Volume 30 (1980)
-
Volume 29 (1979)
-
Volume 28 (1978)
-
Volume 27 (1977)
-
Volume 26 (1976)
-
Volume 25 (1975)
-
Volume 24 (1974)
-
Volume 23 (1973)
-
Volume 22 (1972)
-
Volume 21 (1971)
-
Volume 20 (1970)
-
Volume 19 (1969)
-
Volume 18 (1968)
-
Volume 17 (1967)
-
Volume 16 (1966)
-
Volume 15 (1965)
-
Volume 14 (1964)
-
Volume 13 (1963)
-
Volume 12 (1962)
-
Volume 11 (1961)
-
Volume 10 (1960)
-
Volume 9 (1959)
-
Volume 8 (1958)
-
Volume 7 (1957)
-
Volume 6 (1956)
-
Volume 5 (1955)
-
Volume 4 (1954)
-
Volume 3 (1953)
-
Volume 2 (1952)
-
Volume 1 (1951)
Most Read This Month
