1887

Abstract

A yellow-pigmented bacterial strain, designated Y2, was isolated from farmland soil in Bengbu, Anhui province, China. Cells of strain Y2 were Gram-stain-negative, strictly aerobic, non-motile and rod-shaped. Strain Y2 grew optimally at pH 7.0, 30 °C and in the presence of 2 % (w/v) NaCl. The DNA G+C content was 68.9 mol%. The major fatty acids (>5 %) were iso-C, iso-C, summed feature 9 (C 10-methyl and/or iso-Cω9), iso-C 3-OH and iso-C. The major respiratory quinone was ubiquinone-8 (Q-8), and the major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Phylogenetic analysis of the 16S rRNA gene sequences showed that strain Y2 was most closely related to B1953/27.1 (99.1 % 16S rRNA gene sequence similarity), followed by G3 (98.6 %), XH031 (96.2 %) and RIB1-20 (96.0 %). Strain Y2 exhibited low DNA–DNA relatedness with B1953/27.1 (43.6 ± 0.5 %) and G3 (43.9 ± 2.1 %). On the basis of phenotypic, genotypic and phylogenetic evidence, strain Y2 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is Y2 ( = ACCC 19799 = KCTC 42441).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000652
2015-12-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/12/4809.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000652&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K..), ( 1995;). Short Protocols in Molecular Biology: a Compendium of Methods from Current Protocols in Molecular Biology, 3rd edn. New York: Wiley;.
    [Google Scholar]
  2. Baik K. S., Park S. C., Kim M. S., Kim E. M., Park C., Chun J., Seong C. N.. ( 2008;). Luteimonas marina sp. nov., isolated from seawater. Int J Syst Evol Microbiol 58: 2904–2908 [CrossRef] [PubMed].
    [Google Scholar]
  3. Beveridge T. J., Lawrence J. R., Murray R. G. E.. ( 2007;). Sampling and staining for light microscopy. . In Methods for General and Molecular Microbiology, pp. 19–33. Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder R. L.., 3rd edn.., Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  4. Breznak J. A., Costilow R. N.. ( 1994;). Physicochemical factors in growth. . In Methods for General and Molecular Bacteriology, pp. 137–154. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  5. Chou J. H., Cho N. T., Arun A. B., Young C. C., Chen W. M.. ( 2008;). Luteimonas aquatica sp. nov., isolated from fresh water from Southern Taiwan. Int J Syst Evol Microbiol 58: 2051–2055 [CrossRef] [PubMed].
    [Google Scholar]
  6. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100: 221–230 [CrossRef] [PubMed].
    [Google Scholar]
  7. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12: 133–142 [CrossRef] [PubMed].
    [Google Scholar]
  8. Dong X. Z., Cai M. Y.. ( 2001;). Determinative Manual for Routine Bacteriology Beijing: Scientific Press;.
    [Google Scholar]
  9. Ebersole L. L.. ( 1992;). Acid-fast stain procedures. . In Clinical Microbiology Procedures Handbook, pp. 3.5.1–3.5.11. Edited by Isenberg H. D.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  10. Fan X., Yu T., Li Z., Zhang X. H.. ( 2014;). Luteimonas abyssi sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 64: 668–674 [CrossRef] [PubMed].
    [Google Scholar]
  11. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  12. Finkmann W., Altendorf K., Stackebrandt E., Lipski A.. ( 2000;). Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int J Syst Evol Microbiol 50: 273–282 [CrossRef] [PubMed].
    [Google Scholar]
  13. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  14. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  15. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120 [CrossRef] [PubMed].
    [Google Scholar]
  16. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E. R., Goodfellow M.. Chichester: Wiley;.
    [Google Scholar]
  17. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  18. Park Y. J., Park M. S., Lee S. H., Park W., Lee K., Jeon C. O.. ( 2011;). Luteimonas lutimaris sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 61: 2729–2733 [CrossRef] [PubMed].
    [Google Scholar]
  19. Roh S. W., Kim K. H., Nam Y. D., Chang H. W., Kim M. S., Yoon J. H., Oh H. M., Bae J. W.. ( 2008;). Luteimonas aestuarii sp. nov., isolated from tidal flat sediment. J Microbiol 46: 525–529 [CrossRef] [PubMed].
    [Google Scholar]
  20. Romanenko L. A., Tanaka N., Svetashev V. I., Kurilenko V. V., Mikhailov V. V.. ( 2013;). Luteimonas vadosa sp. nov., isolated from seashore sediment. Int J Syst Evol Microbiol 63: 1261–1266 [CrossRef] [PubMed].
    [Google Scholar]
  21. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  22. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20: 16.
    [Google Scholar]
  23. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44: 846–849 [CrossRef].
    [Google Scholar]
  24. Sun Z. B., Zhang H., Yuan X. F., Wang Y. X., Feng D. M., Wang Y. H., Feng Y. J.. ( 2012;). Luteimonas cucumeris sp. nov., isolated a from cucumber leaf. Int J Syst Evol Microbiol 62: 2916–2920 [CrossRef] [PubMed].
    [Google Scholar]
  25. Sun L. N., Zhang J., Gong F. F., Wang X., Hu G., Li S. P., Hong Q.. ( 2014;). Nocardioides soli sp. nov., a carbendazim-degrading bacterium isolated from soil under the long-term application of carbendazim. Int J Syst Evol Microbiol 64: 2047–2052 [CrossRef] [PubMed].
    [Google Scholar]
  26. Suzuki M., Nakagawa Y., Harayama S., Yamamoto S.. ( 2001;). Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 51: 1639–1652 [CrossRef] [PubMed].
    [Google Scholar]
  27. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  28. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  29. Wu G., Liu Y., Li Q., Du H., You J., Li H., Ke C., Zhang X., Yu J., Zhao T.. ( 2013;). Luteimonas huabeiensis sp. nov., isolated from stratum water. Int J Syst Evol Microbiol 63: 3352–3357 [CrossRef] [PubMed].
    [Google Scholar]
  30. Young C. C., Kämpfer P., Chen W. M., Yen W. S., Arun A. B., Lai W. A., Shen F. T., Rekha P. D., Lin K.-Y., Chou J.-H.. ( 2007;). Luteimonas composti sp. nov., a moderately thermophilic bacterium isolated from food waste. Int J Syst Evol Microbiol 57: 741–744 [CrossRef] [PubMed].
    [Google Scholar]
  31. Zhang D. C., Liu H. C., Xin Y. H., Zhou Y. G., Schinner F., Margesin R.. ( 2010;). Luteimonas terricola sp. nov., a psychrophilic bacterium isolated from soil. Int J Syst Evol Microbiol 60: 1581–1584 [CrossRef] [PubMed].
    [Google Scholar]
  32. Zhang H., Cheng M. G., Sun B., Guo S. H., Song M., Li Q., Huang X.. ( 2015;). Flavobacterium suzhouense sp. nov., isolated from farmland river sludge. Int J Syst Evol Microbiol 65: 370–374 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000652
Loading
/content/journal/ijsem/10.1099/ijsem.0.000652
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error