1887

Abstract

Advancement of DNA sequencing technology allows the routine use of genome sequences in the various fields of microbiology. The information held in genome sequences proved to provide objective and reliable means in the taxonomy of prokaryotes. Here, we describe the minimal standards for the quality of genome sequences and how they can be applied for taxonomic purposes.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002516
2018-01-02
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/1/461.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002516&mimeType=html&fmt=ahah

References

  1. Whitman WB. The need for change: embracing the genome. In Goodfellow M, Sutcliffe I, Chun J. (editors) New Approaches to Prokaryotic Systematics. Methods in Microbiologyvol. 41 London: Academic Press; 2014; pp. 1– 12 [Crossref]
    [Google Scholar]
  2. Rosselló-Móra R, Amann R. Past and future species definitions for Bacteria and Archaea. Syst Appl Microbiol 2015; 38: 209– 216 [CrossRef] [PubMed]
    [Google Scholar]
  3. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol 2014; 64: 316– 324 [CrossRef] [PubMed]
    [Google Scholar]
  4. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57: 81– 91 [CrossRef] [PubMed]
    [Google Scholar]
  5. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106: 19126– 19131 [CrossRef] [PubMed]
    [Google Scholar]
  6. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 2005; 102: 2567– 2572 [CrossRef] [PubMed]
    [Google Scholar]
  7. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14: 60 [CrossRef] [PubMed]
    [Google Scholar]
  8. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: animproved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66: 1100– 1103 [CrossRef] [PubMed]
    [Google Scholar]
  9. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110: 1281– 1286 [CrossRef] [PubMed]
    [Google Scholar]
  10. Colston SM, Fullmer MS, Beka L, Lamy B, Gogarten JP et al. Bioinformatic genome comparisons for taxonomic and phylogenetic assignments using Aeromonas as a test case. MBio 2014; 5: e02136 [CrossRef] [PubMed]
    [Google Scholar]
  11. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  12. Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E et al. The SILVA and "All-species Living Tree Project (LTP)" taxonomic frameworks. Nucleic Acids Res 2014; 42: D643– D648 [CrossRef] [PubMed]
    [Google Scholar]
  13. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33: 152– 155
    [Google Scholar]
  14. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64: 346– 351 [CrossRef] [PubMed]
    [Google Scholar]
  15. Stackebrandt E, Goebel BM. Taxonomic Note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44: 846– 849 [CrossRef]
    [Google Scholar]
  16. Chun J, Grim CJ, Hasan NA, Lee JH, Choi SY et al. Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae. Proc Natl Acad Sci USA 2009; 106: 15442– 15447 [CrossRef] [PubMed]
    [Google Scholar]
  17. Sangal V, Goodfellow M, Jones AL, Schwalbe EC, Blom J et al. Next-generation systematics: an innovative approach to resolve the structure of complex prokaryotic taxa. Sci Rep 2016; 6: 38392 [CrossRef] [PubMed]
    [Google Scholar]
  18. Thompson CC, Vicente AC, Souza RC, Vasconcelos AT, Vesth T et al. Genomic taxonomy of vibrios. BMC Evol Biol 2009; 9: 258 [CrossRef] [PubMed]
    [Google Scholar]
  19. Glaeser SP, Kämpfer P. Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol 2015; 38: 237– 245 [CrossRef] [PubMed]
    [Google Scholar]
  20. Brown JR, Douady CJ, Italia MJ, Marshall WE, Stanhope MJ. Universal trees based on large combined protein sequence data sets. Nat Genet 2001; 28: 281– 285 [CrossRef] [PubMed]
    [Google Scholar]
  21. Wu M, Scott AJ. Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 2012; 28: 1033– 1034 [CrossRef] [PubMed]
    [Google Scholar]
  22. Segata N, Börnigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun 2013; 4: 2304 [CrossRef] [PubMed]
    [Google Scholar]
  23. Hahnke RL, Meier-Kolthoff JP, García-López M, Mukherjee S, Huntemann M et al. Genome-based taxonomic classification of bacteroidetes. Front Microbiol 2016; 7: 2003 [CrossRef] [PubMed]
    [Google Scholar]
  24. Goodwin S, Mcpherson JD, Mccombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 2016; 17: 333– 351 [CrossRef] [PubMed]
    [Google Scholar]
  25. Deurenberg RH, Bathoorn E, Chlebowicz MA, Couto N, Ferdous M et al. Application of next generation sequencing in clinical microbiology and infection prevention. J Biotechnol 2017; 243: 16– 24 [CrossRef] [PubMed]
    [Google Scholar]
  26. Ewing B, Hillier L, Wendl MC, Green P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 1998; 8: 175– 185 [CrossRef] [PubMed]
    [Google Scholar]
  27. Liao YC, Lin SH, Lin HH. Completing bacterial genome assemblies: strategy and performance comparisons. Sci Rep 2015; 5: 8747 [CrossRef] [PubMed]
    [Google Scholar]
  28. Lee I, Chalita M, Ha SM, Na SI, Yoon SH et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67: 2053– 2057 [CrossRef] [PubMed]
    [Google Scholar]
  29. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25: 1043– 1055 [CrossRef] [PubMed]
    [Google Scholar]
  30. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32: 929– 931 [CrossRef] [PubMed]
    [Google Scholar]
  31. Jolley KA, Maiden MC. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 2010; 11: 595 [CrossRef] [PubMed]
    [Google Scholar]
  32. Ankenbrand MJ, Keller A. bcgTree: automatized phylogenetic tree building from bacterial core genomes. Genome 2016; 59: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002516
Loading
/content/journal/ijsem/10.1099/ijsem.0.002516
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error