1887

Abstract

Among available genome relatedness indices, average nucleotide identity (ANI) is one of the most robust measurements of genomic relatedness between strains, and has great potential in the taxonomy of bacteria and archaea as a substitute for the labour-intensive DNA–DNA hybridization (DDH) technique. An ANI threshold range (95–96 %) for species demarcation had previously been suggested based on comparative investigation between DDH and ANI values, albeit with rather limited datasets. Furthermore, its generality was not tested on all lineages of prokaryotes. Here, we investigated the overall distribution of ANI values generated by pairwise comparison of 6787 genomes of prokaryotes belonging to 22 phyla to see whether the suggested range can be applied to all species. There was an apparent distinction in the overall ANI distribution between intra- and interspecies relationships at around 95–96 % ANI. We went on to determine which level of 16S rRNA gene sequence similarity corresponds to the currently accepted ANI threshold for species demarcation using over one million comparisons. A twofold cross-validation statistical test revealed that 98.65 % 16S rRNA gene sequence similarity can be used as the threshold for differentiating two species, which is consistent with previous suggestions (98.2–99.0 %) derived from comparative studies between DDH and 16S rRNA gene sequence similarity. Our findings should be useful in accelerating the use of genomic sequence data in the taxonomy of bacteria and archaea.

Funding
This study was supported by the:
  • National Research Foundation of the Republic of Korea (Award 2012M3A9D1054622 and 2013-035122)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.059774-0
2014-02-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/2/346.html?itemId=/content/journal/ijsem/10.1099/ijs.0.059774-0&mimeType=html&fmt=ahah

References

  1. Acinas S. G., Marcelino L. A., Klepac-Ceraj V., Polz M. F. ( 2004 ). Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. . J Bacteriol 186, 26292635. [View Article] [PubMed]
    [Google Scholar]
  2. Ash C., Farrow J. A. E., Dorsch M., Stackebrandt E., Collins M. D. ( 1991 ). Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. . Int J Syst Bacteriol 41, 343346. [View Article] [PubMed]
    [Google Scholar]
  3. Chan J. Z. M., Halachev M. R., Loman N. J., Constantinidou C., Pallen M. J. ( 2012 ). Defining bacterial species in the genomic era: insights from the genus Acinetobacter . . BMC Microbiol 12, 302. [View Article] [PubMed]
    [Google Scholar]
  4. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. ( 2007 ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57, 22592261. [View Article] [PubMed]
    [Google Scholar]
  5. Cui H. L., Zhou P. J., Oren A., Liu S. J. ( 2009 ). Intraspecific polymorphism of 16S rRNA genes in two halophilic archaeal genera, Haloarcula and Halomicrobium . . Extremophiles 13, 3137. [View Article] [PubMed]
    [Google Scholar]
  6. Deloger M., El Karoui M., Petit M. A. ( 2009 ). A genomic distance based on MUM indicates discontinuity between most bacterial species and genera. . J Bacteriol 191, 9199. [View Article] [PubMed]
    [Google Scholar]
  7. Devereux R., He S. H., Doyle C. L., Orkland S., Stahl D. A., LeGall J., Whitman W. B. ( 1990 ). Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. . J Bacteriol 172, 36093619.[PubMed]
    [Google Scholar]
  8. Gevers D., Cohan F. M., Lawrence J. G., Spratt B. G., Coenye T., Feil E. J., Stackebrandt E., Van de Peer Y., Vandamme P. & other authors ( 2005 ). Opinion: re-evaluating prokaryotic species. . Nat Rev Microbiol 3, 733739. [View Article] [PubMed]
    [Google Scholar]
  9. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M. ( 2007 ). DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. . Int J Syst Evol Microbiol 57, 8191. [View Article] [PubMed]
    [Google Scholar]
  10. Grim C. J., Kotewicz M. L., Power K. A., Gopinath G., Franco A. A., Jarvis K. G., Yan Q. Q., Jackson S. A., Sathyamoorthy V. & other authors ( 2013 ). Pan-genome analysis of the emerging foodborne pathogen Cronobacter spp. suggests a species-level bidirectional divergence driven by niche adaptation. . BMC Genomics 14, 366. [View Article] [PubMed]
    [Google Scholar]
  11. Haley B. J., Grim C. J., Hasan N. A., Choi S. Y., Chun J., Brettin T. S., Bruce D. C., Challacombe J. F., Detter J. C. & other authors ( 2010 ). Comparative genomic analysis reveals evidence of two novel Vibrio species closely related to V. cholerae . . BMC Microbiol 10, 154. [View Article] [PubMed]
    [Google Scholar]
  12. Henz S. R., Huson D. H., Auch A. F., Nieselt-Struwe K., Schuster S. C. ( 2005 ). Whole-genome prokaryotic phylogeny. . Bioinformatics 21, 23292335. [View Article] [PubMed]
    [Google Scholar]
  13. Keswani J., Whitman W. B. ( 2001 ). Relationship of 16S rRNA sequence similarity to DNA hybridization in prokaryotes. . Int J Syst Evol Microbiol 51, 667678.[PubMed]
    [Google Scholar]
  14. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. & other authors ( 2012 ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62, 716721. [View Article] [PubMed]
    [Google Scholar]
  15. Konstantinidis K. T., Tiedje J. M. ( 2005 ). Genomic insights that advance the species definition for prokaryotes. . Proc Natl Acad Sci U S A 102, 25672572. [View Article] [PubMed]
    [Google Scholar]
  16. Konstantinidis K. T., Ramette A., Tiedje J. M. ( 2006 ). The bacterial species definition in the genomic era. . Philos Trans R Soc Lond B Biol Sci 361, 19291940. [View Article] [PubMed]
    [Google Scholar]
  17. Lan Y. M., Wang Q., Cole J. R., Rosen G. L. ( 2012 ). Using the RDP classifier to predict taxonomic novelty and reduce the search space for finding novel organisms. . PLoS ONE 7, e32491. [View Article] [PubMed]
    [Google Scholar]
  18. Lee J. H., Yi H., Chun J. ( 2011 ). rRNASelector: a computer program for selecting ribosomal RNA encoding sequences from metagenomic and metatranscriptomic shotgun libraries. . J Microbiol 49, 689691. [View Article] [PubMed]
    [Google Scholar]
  19. McCarthy B. J., Bolton E. T. ( 1963 ). An approach to the measurement of genetic relatedness among organisms. . Proc Natl Acad Sci U S A 50, 156164. [View Article] [PubMed]
    [Google Scholar]
  20. McDonald D., Price M. N., Goodrich J., Nawrocki E. P., DeSantis T. Z., Probst A., Andersen G. L., Knight R., Hugenholtz P. ( 2012 ). An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. . ISME J 6, 610618. [View Article] [PubMed]
    [Google Scholar]
  21. Meier-Kolthoff J. P., Auch A. F., Klenk H. P., Göker M. ( 2013 ). Genome sequence-based species delimitation with confidence intervals and improved distance functions. . BMC Bioinformatics 14, 60. [View Article] [PubMed]
    [Google Scholar]
  22. Mende D. R., Sunagawa S., Zeller G., Bork P. ( 2013 ). Accurate and universal delineation of prokaryotic species. . Nat Methods 10, 881884. [View Article] [PubMed]
    [Google Scholar]
  23. Pei A. Y., Oberdorf W. E., Nossa C. W., Agarwal A., Chokshi P., Gerz E. A., Jin Z., Lee P., Yang L. & other authors ( 2010 ). Diversity of 16S rRNA genes within individual prokaryotic genomes. . Appl Environ Microbiol 76, 38863897. [View Article] [PubMed]
    [Google Scholar]
  24. Read J., Pfahringer B., Holmes G., Frank E. ( 2011 ). Classifier chains for multi-label classification. . Mach Learn 85, 333359. [View Article]
    [Google Scholar]
  25. Richter M., Rosselló-Móra R. ( 2009 ). Shifting the genomic gold standard for the prokaryotic species definition. . Proc Natl Acad Sci U S A 106, 1912619131. [View Article] [PubMed]
    [Google Scholar]
  26. Rosselló-Mora R., Amann R. ( 2001 ). The species concept for prokaryotes. . FEMS Microbiol Rev 25, 3967. [View Article] [PubMed]
    [Google Scholar]
  27. Schildkraut C. L., Marmur J., Doty P. ( 1961 ). The formation of hybrid DNA molecules and their use in studies of DNA homologies. . J Mol Biol 3, 595617. [View Article] [PubMed]
    [Google Scholar]
  28. Stackebrandt E., Ebers J. ( 2006 ). Taxonomic parameters revisited: tarnished gold standards. . Microbiol Today 33, 152155.
    [Google Scholar]
  29. Stackebrandt E., Goebel B. M. ( 1994 ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44, 846849. [View Article]
    [Google Scholar]
  30. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A. D., Kämpfer P., Maiden M. C., Nesme X., Rosselló-Mora R., Swings J. & other authors ( 2002 ). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. . Int J Syst Evol Microbiol 52, 10431047. [View Article] [PubMed]
    [Google Scholar]
  31. Tindall B. J., Rosselló-Móra R., Busse H. J., Ludwig W., Kämpfer P. ( 2010 ). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60, 249266. [View Article] [PubMed]
    [Google Scholar]
  32. van Rijsbergen C. J. ( 1979 ). Information Retrieval, , 2nd edn.. London:: Butterworths;.
    [Google Scholar]
  33. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. & other authors ( 1987 ). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37, 463464. [View Article]
    [Google Scholar]
  34. Yi H., Cho Y. J., Yoon S. H., Park S. C., Chun J. ( 2012 ). Comparative genomics of Neisseria weaveri clarifies the taxonomy of this species and identifies genetic determinants that may be associated with virulence. . FEMS Microbiol Lett 328, 100105. [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.059774-0
Loading
/content/journal/ijsem/10.1099/ijs.0.059774-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error