1887

Abstract

A Gram-stain-negative, non-motile, non-spore-forming bacterium, designated T47, was isolated from saline soil of the rhizosphere, located on the bank of Wuliangsuhai Lake, Inner Mongolia, northern China. Strain T47 could grow at 10–40 °C (with 30 °C the optimal temperature), pH 6.0–8.0 (optimal pH 6.0) and in the presence of 0–6.0 % (w/v) NaCl [optimal 0–1.0 % (w/v)]. Phylogenetic analysis, based on 16S rRNA gene sequences, revealed that strain T47 formed a stable clade with 4M24, IBFC2009, S37 and LQY-18, with the 16S rRNA gene sequence similarities ranging from 91.9–95.4 %. Its major cellular fatty acids contained iso-C (39.9 %), summed feature 3 (iso-C 2-OH and/or Cω7, 23.0 %), C (12.8 %) and iso-C 3-OH (9.9 %). MK7 was the major menaquinone. The G+C content of the genomic DNA was 45.5 mol%. Based on the phenotypic, phylogenetic and genotypic characteristics, strain T47 represents a novel species within the genus , for which the name sp. nov. is proposed. The type strain is T47 ( = CGMCC 1.15277 = KCTC 42662).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 31200100)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000600
2015-12-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/12/4508.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000600&mimeType=html&fmt=ahah

References

  1. Ahmed I., Ehsan M., Sin Y., Paek J., Khalid N., Hayat R., Chang Y. H. ( 2014;). Sphingobacterium pakistanensis sp. nov., a novel plant growth promoting rhizobacteria isolated from rhizosphere of Vigna mungo . Antonie van Leeuwenhoek 105 325333 [View Article] [PubMed].
    [Google Scholar]
  2. Albert R. A., Waas N. E., Pavlons S. C., Pearson J. L., Ketelboeter L., Rosselló-Móra R., Busse H.-J. ( 2013;). Sphingobacterium psychroaquaticum sp. nov., a psychrophilic bacterium isolated from Lake Michigan water. Int J Syst Evol Microbiol 63 952958 [View Article] [PubMed].
    [Google Scholar]
  3. Choi H.-A., Lee S.-S. ( 2012;). Sphingobacterium kyonggiense sp. nov., isolated from chloroethene-contaminated soil, and emended descriptions of Sphingobacterium daejeonense and Sphingobacterium mizutaii . Int J Syst Evol Microbiol 62 25592564 [View Article] [PubMed].
    [Google Scholar]
  4. De Ley J., Cattoir H., Reynaerts A. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12 133142 [View Article] [PubMed].
    [Google Scholar]
  5. Dong X. Z., Cai M. Y. ( 2001). Determinative Manual for Routine Bacteriology Beijing: (English translation) Science Press;.
    [Google Scholar]
  6. Duan S., Liu Z., Feng X., Zheng K., Cheng L. ( 2009;). Sphingobacterium bambusae sp. nov., isolated from soil of bamboo plantation. J Microbiol 47 693698 [View Article] [PubMed].
    [Google Scholar]
  7. Felsenstein J. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39 783791 [View Article].
    [Google Scholar]
  8. Feng H., Zeng Y., Huang Y. ( 2014;). Sphingobacterium paludis sp. nov., isolated from wetland soil. Int J Syst Evol Microbiol 64 34533458 [View Article] [PubMed].
    [Google Scholar]
  9. Fraser S. L., Jorgensen J. H. ( 1997;). Reappraisal of the antimicrobial susceptibilities of Chryseobacterium and Flavobacterium species and methods for reliable susceptibility testing. Antimicrob Agents Chemother 41 27382741 [PubMed].
    [Google Scholar]
  10. He X., Xiao T., Kuang H., Lan X., Tudahong M., Osman G., Fang C., Rahman E. ( 2010;). Sphingobacterium shayense sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 60 23772381 [View Article] [PubMed].
    [Google Scholar]
  11. Huss V. A., Festl H., Schleifer K. H. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4 184192 [View Article] [PubMed].
    [Google Scholar]
  12. Jiang S., Chen M., Su S., Yang M., Li A., Zhang C., Lin M., Zhang W., Luo X. ( 2014;). Sphingobacterium arenae sp. nov., isolated from sandy soil. Int J Syst Evol Microbiol 64 248253 [View Article] [PubMed].
    [Google Scholar]
  13. Kates M. ( 1986). Techniques of Lipidology: Isolation, Analysis and Identification of Lipids , 2nd edn. Amsterdam: Elsevier;.
    [Google Scholar]
  14. Kim K.-H., Ten L. N., Liu Q.-M., Im W.-T., Lee S.-T. ( 2006;). Sphingobacterium daejeonense sp. nov., isolated from a compost sample. Int J Syst Evol Microbiol 56 20312036 [View Article] [PubMed].
    [Google Scholar]
  15. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62 716721 [View Article] [PubMed].
    [Google Scholar]
  16. Komagata K., Suzuki K. ( 1987;). Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19 161206. [CrossRef]
    [Google Scholar]
  17. Lee D.-H., Hur J. S., Kahng H.-Y. ( 2013;). Sphingobacterium cladoniae sp. nov., isolated from lichen, Cladonia sp., and emended description of Sphingobacterium siyangense . Int J Syst Evol Microbiol 63 755760 [View Article] [PubMed].
    [Google Scholar]
  18. Liu R., Liu H., Zhang C.-X., Yang S.-Y., Liu X.-H., Zhang K.-Y., Lai R. ( 2008;). Sphingobacterium siyangense sp. nov., isolated from farm soil. Int J Syst Evol Microbiol 58 14581462 [View Article] [PubMed].
    [Google Scholar]
  19. Liu J., Yang L.-L., Xu C.-K., Xi J.-Q., Yang F.-X., Zhou F., Zhou Y., Mo M.-H., Li W.-J. ( 2012;). Sphingobacterium nematocida sp. nov., a nematicidal endophytic bacterium isolated from tobacco. Int J Syst Evol Microbiol 62 18091813 [View Article] [PubMed].
    [Google Scholar]
  20. Liu H., Zhang J., Chen D., Cao L., Lu P., Wu Z., Yang F., Li S., Hong Q. ( 2013;). Sphingobacterium changzhouense sp. nov., a bacterium isolated from a rice field. Int J Syst Evol Microbiol 63 45154518 [View Article] [PubMed].
    [Google Scholar]
  21. Mandel M., Marmur J. ( 1968;). Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B 195206 [View Article].
    [Google Scholar]
  22. Peng S., Hong D. D., Xin Y. B., Jun L. M., Hong W. G. ( 2014;). Sphingobacterium yanglingense sp. nov., isolated from the nodule surface of soybean. Int J Syst Evol Microbiol 64 38623866 [View Article] [PubMed].
    [Google Scholar]
  23. Rzhetsky A., Nei M. ( 1992;). A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9 945967.
    [Google Scholar]
  24. Rzhetsky A., Nei M. ( 1993;). Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1 10731095 [PubMed].
    [Google Scholar]
  25. Saitou N., Nei M. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4 406425 [PubMed].
    [Google Scholar]
  26. Sasser M. ( 1990). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  27. Schmidt V. S. J., Wenning M., Scherer S. ( 2012;). Sphingobacterium lactis sp. nov. and Sphingobacterium alimentarium sp. nov., isolated from raw milk and a dairy environment. Int J Syst Evol Microbiol 62 15061511 [View Article] [PubMed].
    [Google Scholar]
  28. Smibert R. M., Krieg N. R. ( 1994;). Phenotypic characterization. In Methods for General and Molecular Bacteriology. , pp. 607654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  29. Sneath P. H. A., Sokal R. R. ( 1973). Numerical Taxonomy. The Principles and Practice of Numerical Classification San Francisco:.
    [Google Scholar]
  30. Stackebrandt E., Goebel B. M. ( 1994;). Taxonomic note: a place for DNA-DNA reasscocitation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44 846849 [View Article].
    [Google Scholar]
  31. Sun L.-N., Zhang J., Chen Q., He J., Li S.-P. ( 2013;). Sphingobacterium caeni sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 63 22602264 [View Article] [PubMed].
    [Google Scholar]
  32. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. ( 2013;). mega6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30 27252729 [View Article] [PubMed].
    [Google Scholar]
  33. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25 48764882 [View Article] [PubMed].
    [Google Scholar]
  34. Wang Y.-N., Cai H., Yu S.-L., Wang Z.-Y., Liu J., Wu X.-L. ( 2007;). Halomonas gudaonensis sp. nov., isolated from a saline soil contaminated by crude oil. Int J Syst Evol Microbiol 57 911915 [View Article] [PubMed].
    [Google Scholar]
  35. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37 463464 [View Article].
    [Google Scholar]
  36. Wei W., Zhou Y., Wang X., Huang X., Lai R. ( 2008;). Sphingobacterium anhuiense sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 58 20982101 [View Article] [PubMed].
    [Google Scholar]
  37. Xiao T., He X., Cheng G., Kuang H., Ma X., Yusup K., Hamdun M., Gulsimay A., Fang C., Rahman E. ( 2013;). Sphingobacterium hotanense sp. nov., isolated from soil of a Populus euphratica forest, and emended descriptions of Sphingobacterium daejeonense and Sphingobacterium shayense . Int J Syst Evol Microbiol 63 815820 [View Article] [PubMed].
    [Google Scholar]
  38. Yabe S., Aiba Y., Sakai Y., Hazaka M., Kawahara K., Yokota A. ( 2013;). Sphingobacterium thermophilum sp. nov., of the phylum Bacteroidetes, isolated from compost. Int J Syst Evol Microbiol 63 15841588 [View Article] [PubMed].
    [Google Scholar]
  39. Yabuuchi E., Kaneko T., Yano I., Moss C. W., Miyoshi N. ( 1983;). Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: Glucose-nonfermenting Gram-negative rods in CDC Groups IIK-2 and IIb. Int J Syst Bacteriol 33 580598 [View Article].
    [Google Scholar]
  40. Yoo S.-H., Weon H.-Y., Jang H.-B., Kim B.-Y., Kwon S.-W., Go S.-J., Stackebrandt E. ( 2007;). Sphingobacterium composti sp. nov., isolated from cotton-waste composts. Int J Syst Evol Microbiol 57 15901593 [View Article] [PubMed].
    [Google Scholar]
  41. Zhang J., Zheng J.-W., Cho B. C., Hwang C. Y., Fang C., He J., Li S.-P. ( 2012;). Sphingobacterium wenxiniae sp. nov., a cypermethrin-degrading species from activated sludge. Int J Syst Evol Microbiol 62 683687 [View Article] [PubMed].
    [Google Scholar]
  42. Zhao P., Zhou Z., Chen M., Lin W., Zhang W., Wei G. ( 2014;). Sphingobacterium gobiense sp. nov., isolated from soil of the Gobi Desert. Int J Syst Evol Microbiol 64 39313935 [View Article] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000600
Loading
/content/journal/ijsem/10.1099/ijsem.0.000600
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error