1887

Abstract

A Gram-stain-negative, non-motile, non-spore-forming bacterium, designated T47, was isolated from saline soil of the rhizosphere, located on the bank of Wuliangsuhai Lake, Inner Mongolia, northern China. Strain T47 could grow at 10–40 °C (with 30 °C the optimal temperature), pH 6.0–8.0 (optimal pH 6.0) and in the presence of 0–6.0 % (w/v) NaCl [optimal 0–1.0 % (w/v)]. Phylogenetic analysis, based on 16S rRNA gene sequences, revealed that strain T47 formed a stable clade with 4M24, IBFC2009, S37 and LQY-18, with the 16S rRNA gene sequence similarities ranging from 91.9–95.4 %. Its major cellular fatty acids contained iso-C (39.9 %), summed feature 3 (iso-C 2-OH and/or Cω7, 23.0 %), C (12.8 %) and iso-C 3-OH (9.9 %). MK7 was the major menaquinone. The G+C content of the genomic DNA was 45.5 mol%. Based on the phenotypic, phylogenetic and genotypic characteristics, strain T47 represents a novel species within the genus , for which the name sp. nov. is proposed. The type strain is T47 ( = CGMCC 1.15277 = KCTC 42662).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000600
2015-12-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/12/4508.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000600&mimeType=html&fmt=ahah

References

  1. Ahmed I. , Ehsan M. , Sin Y. , Paek J. , Khalid N. , Hayat R. , Chang Y. H. . ( 2014;). Sphingobacterium pakistanensis sp. nov., a novel plant growth promoting rhizobacteria isolated from rhizosphere of Vigna mungo . Antonie van Leeuwenhoek 105: 325–333 [CrossRef] [PubMed].
    [Google Scholar]
  2. Albert R. A. , Waas N. E. , Pavlons S. C. , Pearson J. L. , Ketelboeter L. , Rosselló-Móra R. , Busse H.-J. . ( 2013;). Sphingobacterium psychroaquaticum sp. nov., a psychrophilic bacterium isolated from Lake Michigan water. Int J Syst Evol Microbiol 63: 952–958 [CrossRef] [PubMed].
    [Google Scholar]
  3. Choi H.-A. , Lee S.-S. . ( 2012;). Sphingobacterium kyonggiense sp. nov., isolated from chloroethene-contaminated soil, and emended descriptions of Sphingobacterium daejeonense and Sphingobacterium mizutaii . Int J Syst Evol Microbiol 62: 2559–2564 [CrossRef] [PubMed].
    [Google Scholar]
  4. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12: 133–142 [CrossRef] [PubMed].
    [Google Scholar]
  5. Dong X. Z. , Cai M. Y. . ( 2001;). Determinative Manual for Routine Bacteriology Beijing: (English translation) Science Press;.
    [Google Scholar]
  6. Duan S. , Liu Z. , Feng X. , Zheng K. , Cheng L. . ( 2009;). Sphingobacterium bambusae sp. nov., isolated from soil of bamboo plantation. J Microbiol 47: 693–698 [CrossRef] [PubMed].
    [Google Scholar]
  7. Felsenstein J. . ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  8. Feng H. , Zeng Y. , Huang Y. . ( 2014;). Sphingobacterium paludis sp. nov., isolated from wetland soil. Int J Syst Evol Microbiol 64: 3453–3458 [CrossRef] [PubMed].
    [Google Scholar]
  9. Fraser S. L. , Jorgensen J. H. . ( 1997;). Reappraisal of the antimicrobial susceptibilities of Chryseobacterium and Flavobacterium species and methods for reliable susceptibility testing. Antimicrob Agents Chemother 41: 2738–2741 [PubMed].
    [Google Scholar]
  10. He X. , Xiao T. , Kuang H. , Lan X. , Tudahong M. , Osman G. , Fang C. , Rahman E. . ( 2010;). Sphingobacterium shayense sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 60: 2377–2381 [CrossRef] [PubMed].
    [Google Scholar]
  11. Huss V. A. , Festl H. , Schleifer K. H. . ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4: 184–192 [CrossRef] [PubMed].
    [Google Scholar]
  12. Jiang S. , Chen M. , Su S. , Yang M. , Li A. , Zhang C. , Lin M. , Zhang W. , Luo X. . ( 2014;). Sphingobacterium arenae sp. nov., isolated from sandy soil. Int J Syst Evol Microbiol 64: 248–253 [CrossRef] [PubMed].
    [Google Scholar]
  13. Kates M. . ( 1986;). Techniques of Lipidology: Isolation, Analysis and Identification of Lipids , 2nd edn. Amsterdam: Elsevier;.
    [Google Scholar]
  14. Kim K.-H. , Ten L. N. , Liu Q.-M. , Im W.-T. , Lee S.-T. . ( 2006;). Sphingobacterium daejeonense sp. nov., isolated from a compost sample. Int J Syst Evol Microbiol 56: 2031–2036 [CrossRef] [PubMed].
    [Google Scholar]
  15. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. , other authors . ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  16. Komagata K. , Suzuki K. . ( 1987;). Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19: 161–206.[CrossRef]
    [Google Scholar]
  17. Lee D.-H. , Hur J. S. , Kahng H.-Y. . ( 2013;). Sphingobacterium cladoniae sp. nov., isolated from lichen, Cladonia sp., and emended description of Sphingobacterium siyangense . Int J Syst Evol Microbiol 63: 755–760 [CrossRef] [PubMed].
    [Google Scholar]
  18. Liu R. , Liu H. , Zhang C.-X. , Yang S.-Y. , Liu X.-H. , Zhang K.-Y. , Lai R. . ( 2008;). Sphingobacterium siyangense sp. nov., isolated from farm soil. Int J Syst Evol Microbiol 58: 1458–1462 [CrossRef] [PubMed].
    [Google Scholar]
  19. Liu J. , Yang L.-L. , Xu C.-K. , Xi J.-Q. , Yang F.-X. , Zhou F. , Zhou Y. , Mo M.-H. , Li W.-J. . ( 2012;). Sphingobacterium nematocida sp. nov., a nematicidal endophytic bacterium isolated from tobacco. Int J Syst Evol Microbiol 62: 1809–1813 [CrossRef] [PubMed].
    [Google Scholar]
  20. Liu H. , Zhang J. , Chen D. , Cao L. , Lu P. , Wu Z. , Yang F. , Li S. , Hong Q. . ( 2013;). Sphingobacterium changzhouense sp. nov., a bacterium isolated from a rice field. Int J Syst Evol Microbiol 63: 4515–4518 [CrossRef] [PubMed].
    [Google Scholar]
  21. Mandel M. , Marmur J. . ( 1968;). Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B 195–206 [CrossRef].
    [Google Scholar]
  22. Peng S. , Hong D. D. , Xin Y. B. , Jun L. M. , Hong W. G. . ( 2014;). Sphingobacterium yanglingense sp. nov., isolated from the nodule surface of soybean. Int J Syst Evol Microbiol 64: 3862–3866 [CrossRef] [PubMed].
    [Google Scholar]
  23. Rzhetsky A. , Nei M. . ( 1992;). A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9: 945–967.
    [Google Scholar]
  24. Rzhetsky A. , Nei M. . ( 1993;). Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1: 1073–1095 [PubMed].
    [Google Scholar]
  25. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  26. Sasser M. . ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  27. Schmidt V. S. J. , Wenning M. , Scherer S. . ( 2012;). Sphingobacterium lactis sp. nov. and Sphingobacterium alimentarium sp. nov., isolated from raw milk and a dairy environment. Int J Syst Evol Microbiol 62: 1506–1511 [CrossRef] [PubMed].
    [Google Scholar]
  28. Smibert R. M. , Krieg N. R. . ( 1994;). Phenotypic characterization. In Methods for General and Molecular Bacteriology. , pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . Washington, DC: American Society for Microbiology;.
  29. Sneath P. H. A. , Sokal R. R. . ( 1973;). Numerical Taxonomy. The Principles and Practice of Numerical Classification San Francisco:.
    [Google Scholar]
  30. Stackebrandt E. , Goebel B. M. . ( 1994;). Taxonomic note: a place for DNA-DNA reasscocitation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44: 846–849 [CrossRef].
    [Google Scholar]
  31. Sun L.-N. , Zhang J. , Chen Q. , He J. , Li S.-P. . ( 2013;). Sphingobacterium caeni sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 63: 2260–2264 [CrossRef] [PubMed].
    [Google Scholar]
  32. Tamura K. , Stecher G. , Peterson D. , Filipski A. , Kumar S. . ( 2013;). mega6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  33. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  34. Wang Y.-N. , Cai H. , Yu S.-L. , Wang Z.-Y. , Liu J. , Wu X.-L. . ( 2007;). Halomonas gudaonensis sp. nov., isolated from a saline soil contaminated by crude oil. Int J Syst Evol Microbiol 57: 911–915 [CrossRef] [PubMed].
    [Google Scholar]
  35. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. , other authors . ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  36. Wei W. , Zhou Y. , Wang X. , Huang X. , Lai R. . ( 2008;). Sphingobacterium anhuiense sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 58: 2098–2101 [CrossRef] [PubMed].
    [Google Scholar]
  37. Xiao T. , He X. , Cheng G. , Kuang H. , Ma X. , Yusup K. , Hamdun M. , Gulsimay A. , Fang C. , Rahman E. . ( 2013;). Sphingobacterium hotanense sp. nov., isolated from soil of a Populus euphratica forest, and emended descriptions of Sphingobacterium daejeonense and Sphingobacterium shayense . Int J Syst Evol Microbiol 63: 815–820 [CrossRef] [PubMed].
    [Google Scholar]
  38. Yabe S. , Aiba Y. , Sakai Y. , Hazaka M. , Kawahara K. , Yokota A. . ( 2013;). Sphingobacterium thermophilum sp. nov., of the phylum Bacteroidetes, isolated from compost. Int J Syst Evol Microbiol 63: 1584–1588 [CrossRef] [PubMed].
    [Google Scholar]
  39. Yabuuchi E. , Kaneko T. , Yano I. , Moss C. W. , Miyoshi N. . ( 1983;). Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: Glucose-nonfermenting Gram-negative rods in CDC Groups IIK-2 and IIb. Int J Syst Bacteriol 33: 580–598 [CrossRef].
    [Google Scholar]
  40. Yoo S.-H. , Weon H.-Y. , Jang H.-B. , Kim B.-Y. , Kwon S.-W. , Go S.-J. , Stackebrandt E. . ( 2007;). Sphingobacterium composti sp. nov., isolated from cotton-waste composts. Int J Syst Evol Microbiol 57: 1590–1593 [CrossRef] [PubMed].
    [Google Scholar]
  41. Zhang J. , Zheng J.-W. , Cho B. C. , Hwang C. Y. , Fang C. , He J. , Li S.-P. . ( 2012;). Sphingobacterium wenxiniae sp. nov., a cypermethrin-degrading species from activated sludge. Int J Syst Evol Microbiol 62: 683–687 [CrossRef] [PubMed].
    [Google Scholar]
  42. Zhao P. , Zhou Z. , Chen M. , Lin W. , Zhang W. , Wei G. . ( 2014;). Sphingobacterium gobiense sp. nov., isolated from soil of the Gobi Desert. Int J Syst Evol Microbiol 64: 3931–3935 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000600
Loading
/content/journal/ijsem/10.1099/ijsem.0.000600
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error