-
Volume 65,
Issue Pt_12,
2015
Volume 65, Issue Pt_12, 2015
- NEW TAXA
-
- Actinobacteria
-
Dissecting the taxonomic heterogeneity within Propionibacterium acnes: proposal for Propionibacterium acnes subsp. acnes subsp. nov. and Propionibacterium acnes subsp. elongatum subsp. nov.
Propionibacterium acnes subsp. acnes subsp. nov. and Propionibacterium acnes subsp. elongatum subsp. nov. are described. These emanate from the three known phylotypes of P. acnes, designated types I, II and III. Electron microscopy confirmed the filamentous cell shape of type III, showing a striking difference from types I/II, which were short rods. Biochemical tests indicated that, in types I/II, either the pyruvate, l-pyrrolidonyl arylamidase or d-ribose 2 test was positive, whereas all of these were negative among type III strains. Matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) spectra, which profile mainly their ribosomal proteins, were different between these two groups. Surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) spectra of all phylotypes revealed a specific protein biomarker that was overexpressed in type III strains compared with types I/II only when grown aerobically. Reference strains had high whole-genome similarity between types I (>91 %) and II (>75 %), but a considerably lower level of 72 % similarity with type III. recA and gyrB sequence dendrograms confirmed the distant relatedness of type III, indicating the presence of two distinct centres of variation within the species P. acnes. On the other hand, cellular fatty acid profiles and 16S rRNA gene sequence relatedness (>99.3 %) circumscribed the species. Thus, we propose two subspecies, Propionibacterium acnes subsp. acnes subsp. nov. for types I/II and Propionibacterium acnes subsp. elongatum subsp. nov. for type III. The type strain of Propionibacterium acnes subsp. acnes is NCTC 737T ( = ATCC 6919T = JCM 6425T = DSM 1897T = CCUG 1794T), while the type strain of Propionibacterium acnes subsp. elongatum is K124T ( = NCTC 13655T = JCM 18919T).
-
Nocardioides glacieisoli sp. nov., isolated from a glacier
More LessA Gram-stain-positive, rod-shaped, non-spore-forming bacterium (strain HLT3-15T) was isolated from the ice tongue surface of the Hailuogou glacier in Szechwan Province, PR China. Phylogenetic analysis, based on 16S rRNA gene sequences, revealed that strain HLT3-15T belonged to the genus Nocardioides. The highest levels of sequence similarities were found with Nocardioides hwasunensis CGMCC 4.6881T and Nocardioides ganghwensis CGMCC 4.6875T (98.5 % and 98.3 %, respectively). However, DNA–DNA relatedness demonstrated that strain HLT3-15T was distinct from its closest phylogenetic neighbours. The major cellular fatty acids of strain HLT3-15T were C17 : 1ω8c and iso-C16 : 0. Strain HLT3-15T contained ll-2,6-diaminopimelic acid as the diamino acid in the cell-wall peptidoglycan and MK-8(H4) as the predominant menaquinone. On the basis of a polyphasic approach, a novel species, Nocardioides glacieisoli sp. nov., is proposed with HLT3-15T ( = CGMCC 1.11097T = NBRC 109781T) as the type strain.
-
Nocardioides ungokensis sp. nov., isolated from lake sediment
More LessA Gram-reaction-positive, aerobic, coccus- to rod-shaped, non-motile, non-spore-forming bacterium (strain UKS-03T) was isolated from a sediment sample of Ungok Lake in Gochang, Republic of Korea. The taxonomic position of this bacterium was determined in an investigation based on a polyphasic approach. On the basis of 16S rRNA gene sequence analysis, strain UKS-03T was shown to belong to the family Nocardioidaceae and to be related most closely to Nocardioides ginsengisegetis Gsoil 485T (98.5 % similarity), Nocardioides koreensis MSL-09T (98.4 %) and ‘Nocardioides panaciterrulae’ Gsoil 958 (97.3 %). Strain UKS-03T was characterized chemotaxonomically as having ll-2,6-diaminopimelic acid in its cell-wall peptidoglycan, MK-8(H4) as the predominant menaquinone, diphosphatidylglycerol and phosphatidylglycerol as the main polar lipids, and iso-C16 : 0, C17 : 1ω8c and C17 : 0 10-methyl as its major fatty acids. The G+C content of the genomic DNA was 71.9 mol%. Mean DNA–DNA relatedness values between strain UKS-03T and N. ginsengisegetis Gsoil 485T, N. koreensis KCTC 19272T and ‘N. panaciterrulae’ Gsoil 958 were 37.5 ± 7.2, 6.8 ± 0.9 and 3.1 ± 0.7 %, respectively. On the basis of the data from this polyphasic taxonomic study, strain UKS-03T represents a novel species of the genus Nocardioides, for which the name Nocardioides ungokensis sp. nov. is proposed. The type strain is UKS-03T ( = KACC 18304T = LMG 28591T).
-
Micromonospora zhanjiangensis sp. nov., isolated from mangrove forest soil
Li Zhang, Lei Li, Zixin Deng and Kui HongA novel actinomycete, designated strain 2902at01T was isolated from soil collected at a mangrove forest in Zhanjiang, Guangdong province, China. The strain was identified using a polyphasic classification method. The 16S rRNA gene sequence of strain 2902at01T showed the highest similarity to Micromonospora equina Y22T (98.3 %) and Micromonospora pattaloongensis TJ2-2T (98.1 %). Phylogenetic analysis based on the gyrB gene sequence also clearly showed that the strain was different from any previously discovered species of the genus Micromonospora. The characteristic whole-cell sugars were ribose and xylose. The cell-wall hydrolysates contained alanine, asparagine, glycine and meso-diaminopimelic acid. MK-10(H6) and MK-10(H8) were the major menaquinones of the novel strain. The predominant fatty acids were iso-C15 : 0, anteiso-C15 : 0 and iso-C16 : 0. The characteristic polar lipids of strain 2902at01T were phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannoside and diphosphatidylglycerol. The DNA G+C content was 70.2 mol%. DNA–DNA hybridization data combined with other physiological and biochemical features could distinguish strain 2902at01T from the reference strains M. equina Y22T and M. pattaloongensis TJ2-2 T. On the basis of these phenotypic and genotypic data, strain 2902at01T represents a novel species of the genus Micromonospora, for which the name Micromonospora zhanjiangensis sp. nov. is proposed. The type strain is 2902at01T ( = CCTCC AA2014018T = DSM 45902T).
-
Plantactinospora sonchi sp. nov., an actinobacterium isolated from the leaves of common sowthistle (Sonchus oleraceus L.)
A novel actinobacterium, designated strain NEAU-QY2T, was isolated from the leaves of Sonchus oleraceus L. specimen, collected from Wuchang, Heilongjiang Province, China. A polyphasic study was carried out to establish the taxonomic position of this strain. The organism formed single spores with rough surfaces on substrate mycelia. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NEAU-QY2T belonged to the genus Plantactinospora and formed a monophyletic clade with its closest related strains Plantactinospora endophytica YIM 68255T (99.2 % 16S rRNA gene sequence similarity), Plantactinospora veratri NEAU-FHS4T (98.8 %) and Plantactinospora mayteni YIM 61359T (98.7 %), an association that was supported by a bootstrap value of 90 % in the neighbour-joining tree and also recovered with the maximum-likelihood algorithm. However, DNA–DNA hybridization values between strain NEAU-QY2T and the three closely related strains were below 70 %. With reference to phenotypic characteristics, phylogenetic data and DNA–DNA hybridization results, strain NEAU-QY2T was distinguished from closely related strains and is classified as representing a novel species of the genus Plantactinospora, for which the name Plantactinospora sonchi sp. nov. is proposed. The type strain is NEAU-QY2T ( = CGMCC 4.7216T = JCM 30345T).
- Firmicutes and related organisms
-
Tumebacillus lipolyticus sp. nov., isolated from river water
More LessAn aerobic, endospore-forming, alkali-tolerant, Gram-stain-positive, non-motile, rod-shaped bacterium, designated strain NIO-S10T, was isolated from a surface water sample collected from the Godavari River, Kapileswarapuram, India. Colonies on nutrient agar were circular, 3-4 mm in diameter, creamish and raised after incubation for 36 h at 37 °C. Growth occurred at 20–40 °C, at pH 6–9 and in the presence of 0–2 % (w/v) NaCl. Strain NIO-S10T was positive for oxidase, caseinase, DNase, gelatinase, lipase and urease activities, and negative for catalase, aesculinase, amylase and cellulase activities. The fatty acids were dominated by branched and saturated fatty acids, with a high abundance of iso-C15 : 0, anteiso-C15 : 0 and C18 : 0.The cell-wall peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid, and MK-7 was the major menaquinone. The DNA G+C content of strain NIO-S10T was 54.4 mol%. A blast sequence similarity search based on 16S rRNA gene sequences indicated that Tumebacillus ginsengisoli Gsoil 1105T was the nearest phylogenetic neighbour to strain NIO-S10T, with a pairwise sequence similarity of 94.9 %. Phylogenetic analysis showed that strain NIO-S10T was clustered with members of the genus Tumebacillus and together with members of the genus Effusibacillus. Based on phenotypic characteristics and phylogenetic inference, strain NIO-S10T represents a novel species of the genus Tumebacillus, for which the name Tumebacillus lipolyticus sp. nov. is proposed. The type strain is NIO-S10T ( = KCTC 32289T = MTCC 12483T).
-
Halobacillus sediminis sp. nov., a moderately halophilic bacterium isolated from a solar saltern sediment
More LessA Gram-staining-positive, moderately halophilic bacterium, designated strain NGS-2T, was isolated from sediment of a solar saltern pond located in Shinan, Korea. Strain NGS-2T was a strictly aerobic, non-motile rod that grew at pH 5.0–10.0 (optimum, pH 8.0), at 10–30 °C (optimum, 28 °C) and in the presence of 1–20 % (w/v) NaCl (optimum, 10 % NaCl). Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain NGS-2T belonged to the genus Halobacillus, with sequence similarity of 98.4–95.8 % to existing type strains, showing the highest sequence similarity to Halobacillus dabanensis D-8T (98.4 %), H. litoralis SL-4T (98.4 %), H. trueperi SL-5T (98.2 %), H. faecis IGA7-4T (98.2 %), H. profundi IS-Hb4T (98.1 %) and H. mangrovi MS10T (98.0 %). The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidyl-N-methylethanolamine and an unknown glycolipid. The cell-wall peptidoglycan was based on l-Orn–d-Asp, the predominant isoprenoid quinone was menaquinone 7 (MK-7) and the major fatty acids were anteiso-C15: 0 and anteiso-C17: 0. The DNA G+C content of the novel isolate was 45.0 mol%. Levels of DNA–DNA relatedness between strain NGS-2T and the type strains of 12 other species of the genus ranged from 32 to 3 %. On the basis of the polyphasic analysis conducted in this study, strain NGS-2T represents a novel species of the genus Halobacillus, for which the name Halobacillus sediminis sp. nov. is proposed. The type strain is NGS-2T ( = KACC 18263T = NBRC 110639T).
-
Paenibacillus zeae sp. nov., isolated from maize (Zea mays L.) seeds
Four Gram-stain-positive bacterial strains, designated 6R2T, 6R18, 3T2 and 3T10, isolated from seeds of hybrid maize (Zea mays L., Jingke 968) were investigated using a polyphasic taxonomic approach. Cells were aerobic, motile, spore-forming and rod-shaped. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolates may represent a novel species of the genus Paenibacillus, the four closest neighbours being Paenibacillus lautus NRRL NRS-666T (97.1 % similarity), Paenibacillus glucanolyticus DSM 5162T (97.0 %), Paenibacillus lactis MB 1871T (97.0 %) and Paenibacillus chibensis JCM 9905T (96.8 %). The DNA G+C content of strain 6R2T was 51.8 mol%. Its polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The predominant respiratory quinone was menaquinone 7 (MK-7) and the major fatty acids were anteiso-C15 : 0 and iso-C14 : 0. Strains 6R2T, 6R18, 3T2 and 3T10 were clearly distinguished from the above type strains using phylogenetic analysis, DNA–DNA hybridization, and a range of physiological and biochemical characteristics. It is evident from the genotypic and phenotypic data that strains 6R2T, 6R18, 3T2 and 3T10 represent a novel species of the genus Paenibacillus, for which the name Paenibacillus zeae sp. nov. is proposed. The type strain is 6R2T ( = KCTC 33674T = CICC 23860T).
-
Bacillus endolithicus sp. nov., isolated from pebbles
More LessStrain JC267T was isolated from pebbles collected from Pingleshwar beach, Gujarat, India. Cells are Gram-stain-positive, facultatively anaerobic, non-motile rods forming sub-terminal endospores in swollen ellipsoidal to oval sporangia. Strain JC267T contains anteiso-C15 : 0, iso-C15 : 0, iso-C14 : 0, iso-C16 : 0, C16 : 0 and anteiso-C17 : 0 as major (>5 %) cellular fatty acids. Polar lipids include phosphatidylglycerol, phospholipids (PL1–3), glycolipids (GL1–2) and an unidentified lipid. Cell-wall amino acids are composed of diagnostic meso-diaminopimelic acid, dl-alanine and a small amount of d-glutamic acid. The genomic DNA G+C content of strain JC267T is 45.5 mol%. The 16S rRNA gene sequence of strain JC267T showed highest sequence similarities of < 98.41 % with all species of the genus Bacillus when subjected to EzTaxon-e blast analysis. The reassociation values based on DNA–DNA hybridization of strain JC267T with Bacillus halosaccharovorans IBRC-M 10095T and Bacillus niabensis JCM 16399T were 26 ± 1 % and 34 ± 3 %, respectively. Based on taxonomic data obtained using a polyphasic approach, strain JC267T represents a novel species of the genus Bacillus, for which the name Bacillus endolithicus sp. nov. is proposed. The type strain is JC267T ( = IBRC-M 10914T = KCTC 33579T).
-
Paenibacillus faecis sp. nov., isolated from human faeces
A spore-forming, rod-shaped Gram-strain-positive bacterium, strain 656.84T, was isolated from human faeces in 1984. It contained anteiso-C15 : 0 as the major cellular fatty acid, meso-diaminopimelic acid was found in the cell wall peptidoglycan, the polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and aminophospholipids as the major components, and the predominant menaquinone was MK-7. The DNA G+C content was 52.9 mol%. The results of comparative 16S rRNA gene sequence studies placed strain 656.84T within the genus Paenibacillus. Its closest phylogenetic relatives were Paenibacillus barengoltzii and Paenibacillus timonensis. Levels of DNA–DNA relatedness between strain 656.84T and Paenibacillus timonensis CIP 108005T and Paenibacillus barengoltzii CIP 109354T were 17.3 % and 36.8 %, respectively, indicating that strain 656.84T represents a distinct species. On the basis of phenotypic and genotypic results, strain 656.84T is considered to represent a novel species within the genus Paenibacillus, for which the name Paenibacillus faecis sp. nov. is proposed; the type strain is 656.84T ( = DSM 23593T = CIP 101062T).
-
Weissella jogaejeotgali sp. nov., isolated from jogae jeotgal, a traditional Korean fermented seafood
Strain FOL01T was isolated from traditionally fermented Korean jogae jeotgal (fermented clams). Phylogenetic sequence analysis of the 16S rRNA gene from FOL01T revealed that it is closely related to Weissella thailandensis FS61-1T and Weissella paramesenteroides ATCC 33313T with 99.39 % and 98.50 % 16S rRNA gene sequence similarities, respectively. API and VITEK analyses showed that strain FOL01T could be separated from its nearest phylogenetic relatives with respect to carbohydrate fermentation and antibiotic resistance. Subsequent amplified rRNA gene restriction analysis of 16S rRNA genes and HaeIII-restriction enzyme profiling of genomic DNAs revealed different band patterns. In addition, DNA–DNA hybridization of genomic DNAs showed 63.9 % relatedness. Analysis of the composition of cellular fatty acids confirmed that strain FOL01T differs from its close relatives and supports the proposal to assign this organism to a novel species of the genus Weissella. Based on these results, strain FOL01T could be classified as a novel species of the genus Weissella, for which the name Weissella jogaejeotgali sp. nov. is proposed. The type strain is FOL01T ( = KCCM 43128T = JCM 30589T).
-
Lactobacillus herbarum sp. nov., a species related to Lactobacillus plantarum
More LessStrain TCF032-E4 was isolated from a traditional Chinese fermented radish. It shares >99% 16S rRNA sequence identity with L. plantarum, L. pentosus and L. paraplantarum. This strain can ferment ribose, galactose, glucose, fructose, mannose, mannitol, N-acetylglucosamine, amygdalin, arbutin, salicin, cellobiose, maltose, lactose, melibiose, trehalose and gentiobiose. It cannot ferment sucrose, which can be used by L. pentosus, L. paraplantarum, L. fabifermentans, L. xiangfangensis and L. mudanjiangensis, as well as most of the L. plantarum strains (88.7%). TCF032-E4 cannot grow at temperature above 32 °C. This strain shares 78.2–83.6% pheS (phenylalanyl-tRNA synthetase alpha subunit) and 89.5–94.9% rpoA (RNA polymerase alpha subunit) sequence identity with L. plantarum, L. pentosus, L. paraplantarum, L. fabifermentans, L. xiangfangensis and L. mudanjiangensis. These results indicate that TCF032-E4 represents a distinct species. This hypothesis was further confirmed by whole-genome sequencing and comparison with available genomes of related species. The draft genome size of TCF032-E4 is approximately 2.9 Mb, with a DNA G+C content of 43.5 mol%. The average nucleotide identity (ANI) between TCF032-E4 and related species ranges from 79.0 to 81.1%, the highest ANI value being observed with L. plantarum subsp. plantarum ATCC 14917T. A novel species, Lactobacillus herbarum sp. nov., is proposed with TCF032-E4T ( = CCTCC AB2015090T = DSM 100358T) as the type strain.
-
Clostridium luticellarii sp. nov., isolated from a mud cellar used for producing strong aromatic liquors
More LessA strictly anaerobic, Gram-stain-positive bacterium, designated FW431T, was isolated from a mud cellar used for producing strong aromatic Chinese liquors. The strain was able to produce butanoic acid, an important component of the aroma style of Chinese liquors. Cells of strain FW431T were straight or slightly curved rods with a polar endospore and peritrichous flagella. The major cellular fatty acids (>10 % of the total) were C16 : 0, C18 : 1ω9c and C18 : 0. Biolog assays indicated that the strain preferably metabolizes palatinose, l-fucose, β-hydroxybutyric acid, l-rhamnose and α-ketobutyric acid among 95 carbon sources tested. FW431T was related most closely to Clostridium ljungdahlii DSM 13528T and Clostridium kluyveri DSM 555T based on 16S rRNA gene sequence similarities of 95.0 and 94.2 %, respectively. The DNA G+C content of the genomic DNA was 44.4 mol%. Based on the evidence presented here, FW431T ( = CGMCC 1.5201T = KCTC 15519T) is proposed as the type strain of a novel species, Clostridium luticellarii sp. nov.
-
Clostridium punense sp. nov., an obligate anaerobe isolated from healthy human faeces
An obligately anaerobic, rod-shaped (0.5–1.0 × 2.0–10.0 μm), Gram-stain-positive bacterium, occurring mainly singly or in pairs, and designated BLPYG-8T, was isolated from faeces of a healthy human volunteer aged 56 years. Cells were non-motile. Oval, terminal spores were formed that swell the cells. The strain was affiliated with the genus Clostridium sensu stricto (Clostridium rRNA cluster I) as revealed by 16S rRNA gene sequence analysis. Strain BLPYG-8T showed 97.3 to 97.4 % 16S rRNA gene sequence similarity with Clostridium sulfidigenes DSM 18982T, Clostridium subterminale DSM 6970T and Clostridium thiosulfatireducens DSM 13105T. DNA–DNA hybridization and phenotypic analysis showed that the strain was distinct from its closest relatives, C. sulfidigenes DSM 18982T, C. subterminale DSM 6970T, C. thiosulfatireducens DSM 13105T with 54.2, 53.9 and 53.3 % DNA–DNA relatedness, respectively. Strain BLPYG-8T grew in PYG broth at temperatures between 20 and 40 °C (optimum 37 °C). The strain utilized a range of amino acids as well as carbohydrates as a source of carbon and energy. Glucose fermentation resulted in the formation of volatile fatty acids mainly acetic acid, n-butyric acid and organic acids such as succinic and lactic acid. The DNA G+C content of strain BLPYG-8T was 44.1 mol%. The major fatty acids (>10 %) were C14 : 0, iso-C15 : 0, C16 : 1ω7c and C16 : 0. Phylogenetic analysis and specific phenotypic characteristics and/or DNA G+C content differentiated the strain from its closest relatives. On the basis of these data, strain BLPYG-8T represents a novel species of the genus Clostridium, for which the name Clostridium punense sp. nov. is proposed. The type strain is BLPYG-8T ( = DSM 28650T = CCUG 64195T = MCC 2737T).
-
Paenibacillus ripae sp. nov., isolated from bank side soil
A Gram-stain-variable, rod-shaped, non-motile and endospore-forming bacterium, designated strain HZ1T, was isolated from a sample of bank side soil from Hangzhou city, Zhejiang province, PR China. On the basis of 16S rRNA gene sequence analysis, strain HZ1T was closely related to members of the genus Paenibacillus, sharing the highest levels of sequence similarity with Paenibacillus agarexedens DSM 1327T (94.4 %), Paenibacillus sputi KIT00200-70066-1T (94.4 %). Growth occurred at 15–42 °C (optimum 30–37 °C), pH 5.0–9.5 (optimum pH 7.0–8.0) and NaCl concentrations of up to 6.0 % (w/v) were tolerated (optimum 0.5 %). The dominant respiratory quinone was MK-7 and the DNA G+C content was 40.1 mol%. The major fatty acids were anteiso-C15 : 0 and iso-C16 : 0. The major polar lipids of strain HZ1T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and several unknown lipids. The diagnostic diamino acid found in the cell-wall peptidoglycan was meso-diaminopimelic acid. Based on its phenotypic and chemotaxonomic characteristics and phylogenetic data, strain HZ1T represents a novel species of the genus Paenibacillus, for which the name Paenibacillus ripae sp. nov. (type strain HZ1T = CCTCC AB 2014276T = LMG 28639T) is proposed.
- Proteobacteria
-
Caulobacter flavus sp. nov., a stalked bacterium isolated from rhizosphere soil
More LessA Gram-stain-negative, aerobic, yellow-pigmented and rod-shaped bacterium with a single polar flagellum or a stalk, designated strain RHGG3T, was isolated from rhizosphere soil of cultivated watermelon (Citrullus lanatus) collected from Hefei, China. Optimal growth of strain RHGG3T was observed at pH 7.0 and 28–30 °C. Cells were catalase-positive and oxidase-negative. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain RHGG3T belonged to the genus Caulobacter and showed the highest 16S rRNA gene sequence similarities to Caulobacter segnis ATCC 21756T (98.6 %), Caulobacter vibrioides CB51T (98.3 %) and Caulobacter henricii ATCC 15253T (97.2 %). The G+C content of the genomic DNA was 70 mol%. Strain RHGG3T contained Q-10 as the sole ubiquinone and the major fatty acids (>8 %) were 11-methyl C18 : 1ω7c, C18 : 1ω7c, C16 : 0, C15 : 0 and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH). The polar lipids were various unknown glycolipids, phosphatidylglycerol and phosphoglycolipids. DNA–DNA relatedness of strain RHGG3T to type strains of the most closely related species (Caulobacter segnis ATCC 21756T, Caulobacter vibrioides DSM 4738 and Caulobacter henricii ATCC 15253T) was 32.4–40.9 %. Based on polyphasic taxonomy analysis (phylogenetic, unique phenotypic traits, chemotaxonomic and DNA–DNA hybridizations), strain RHGG3T represents a novel species of the genus Caulobacter, for which the name Caulobacter flavus sp. nov. is proposed. The type strain is RHGG3T ( = CGMCC 1.15093T = KCTC 42581T = JCM 30763T).
-
Bradyrhizobium tropiciagri sp. nov. and Bradyrhizobium embrapense sp. nov., nitrogen-fixing symbionts of tropical forage legumes
Biological nitrogen fixation is a key process for agricultural production and environmental sustainability, but there are comparatively few studies of symbionts of tropical pasture legumes, as well as few described species of the genus Bradyrhizobium, although it is the predominant rhizobial genus in the tropics. A detailed polyphasic study was conducted with two strains of the genus Bradyrhizobium used in commercial inoculants for tropical pastures in Brazil, CNPSo 1112T, isolated from perennial soybean (Neonotonia wightii), and CNPSo 2833T, from desmodium (Desmodium heterocarpon). Based on 16S-rRNA gene phylogeny, both strains were grouped in the Bradyrhizobium elkanii superclade, but were not clearly clustered with any known species. Multilocus sequence analysis of three (glnII, gyrB and recA) and five (plus atpD and dnaK) housekeeping genes confirmed that the strains are positioned in two distinct clades. Comparison with intergenic transcribed spacer sequences of type strains of described species of the genus Bradyrhizobium showed similarity lower than 93.1 %, and differences were confirmed by BOX-PCR analysis. Nucleotide identity of three housekeeping genes with type strains of described species ranged from 88.1 to 96.2 %. Average nucleotide identity of genome sequences showed values below the threshold for distinct species of the genus Bradyrhizobium ( < 90.6 %), and the value between the two strains was also below this threshold (91.2 %). Analysis of nifH and nodC gene sequences positioned the two strains in a clade distinct from other species of the genus Bradyrhizobium. Morphophysiological, genotypic and genomic data supported the description of two novel species in the genus Bradyrhizobium, Bradyrhizobium tropiciagri sp. nov. (type strain CNPSo 1112T = SMS 303T = BR 1009T = SEMIA 6148T = LMG 28867T) and Bradyrhizobium embrapense sp. nov. (type strain CNPSo 2833T = CIAT 2372T = BR 2212T = SEMIA 6208T = U674T = LMG 2987).
-
Bradyrhizobium viridifuturi sp. nov., encompassing nitrogen-fixing symbionts of legumes used for green manure and environmental services
Symbiotic nitrogen-fixing bacteria, commonly called rhizobia, are agronomically important because they can provide significant amounts of nitrogen to plants and help in recovery of impoverished soils and improvement of degraded environments. In recent years, with advances in molecular techniques, several studies have shown that these bacteria have high levels of genetic diversity, resulting in taxonomic reclassifications and descriptions of new species. However, despite the advances achieved, highly conserved 16S ribosomal genes (16S rRNA) do not elucidate differences between species of several genera, including the genus Bradyrhizobium. Other methodologies, such as multilocus sequence analysis (MLSA), have been used in such cases, with good results. In this study, three strains (SEMIAs 690T, 6387 and 6428) of the genus Bradyrhizobium, isolated from nitrogen-fixing nodules of Centrosema and Acacia species, without clear taxonomic positions, were studied. These strains differed from genetically closely related species according to the results of MLSA of four housekeeping genes (dnaK, glnII, gyrB and recA) and nucleotide identities of the concatenated genes with those of related species ranged from 87.8 % to 95.7 %, being highest with Bradyrhizobium elkanii. DNA–DNA hybridization (less than 32 % DNA relatedness) and average nucleotide identity values of the whole genomes (less than 90.5 %) indicated that these strains represented a novel species, and phenotypic traits were determined. Our data supported the description of the SEMIA strains as Bradyrhizobium viridifuturi sp. nov., and SEMIA 690T ( = CNPSo 991T = C 100aT = BR 1804T = LMG 28866T), isolated from Centrosema pubescens, was chosen as type strain.
-
Rhizobium marinum sp. nov., a malachite-green-tolerant bacterium isolated from seawater
More LessA motile, Gram-stain-negative, non-pigmented bacterial strain, designated MGL06T, was isolated from seawater of the South China Sea on selection medium containing 0.1 % (w/v) malachite green. Strain MGL06T showed highest 16S rRNA gene sequence similarity to Rhizobium vignae CCBAU 05176T (97.2 %), and shared 93.2–96.9 % with the type strains of other recognized Rhizobium species. Phylogenetic analyses based on 16S rRNA and housekeeping gene sequences showed that strain MGL06T belonged to the genus Rhizobium. Mean levels of DNA–DNA relatedness between strain MGL06T and R. vignae CCBAU 05176T, Rhizobium huautlense S02T and Rhizobium alkalisoli CCBAU 01393T were 20 ± 3, 18 ± 2 and 14 ± 3 %, respectively, indicating that strain MGL06T was distinct from them genetically. Strain MGL06T did not form nodules on three different legumes, and the nodD and nifH genes were also not detected by PCR or based on the draft genome sequence. Strain MGL06T contained Q-10 as the predominant ubiquinone. The major fatty acid was C18 : 1ω7c/C18 : 1ω6c with minor amounts of C19 : 0 cyclo ω8c, C16 : 0 and C18 : 1ω7c 11-methyl. Polar lipids of strain MGL06T included unknown glycolipids, phosphatidylcholine, aminolipid, phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, an unknown polar lipid and aminophospholipid. Based on its phenotypic and genotypic data, strain MGL06T represents a novel species of the genus Rhizobium, for which the name Rhizobium marinum sp. nov. is proposed. The type strain is MGL06T ( = MCCC 1A00836T = JCM 30155T).
-
Rhizobium helianthi sp. nov., isolated from the rhizosphere of sunflower
More LessA Gram-stain-negative, non-spore-forming, rod-shaped and aerobic bacterium, designated Xi19T, was isolated from a soil sample collected from the rhizosphere of sunflower (Helianthus annuus) in Wuyuan county of Inner Mongolia, China and was characterized taxonomically by using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the novel isolate was related to species of the genus Rhizobium, sharing the greatest 16S rRNA gene sequence similarity with Rhizobium rhizoryzae J3-AN59T (98.4 %), followed by Rhizobium pseudoryzae J3-A127T (97.4 %). There were low similarities ( < 91 %) between the atpD, recA and glnII gene sequences of the novel strain and those of members of the genus Rhizobium. DNA–DNA hybridization values between strain Xi19T and the most related strain Rhizobium rhizoryzae J3-AN59T were low. The major cellular fatty acids of strain Xi19T were C16 : 0, summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and C19 : 0 cyclo ω8c. Q-10 was identified as the predominant ubiquinone and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine. The DNA G+C content of strain Xi19T was 60.2 mol%. On the basis of physiological and biochemical characteristics, coupled with genotypic data obtained in this work, strain Xi19T represents a novel species of the genus Rhizobium, for which the name Rhizobium helianthi is proposed. The type strain is Xi19T ( = CGMCC 1.12192T = KCTC 23879T).
Volumes and issues
-
Volume 73 (2023)
-
Volume 72 (2022)
-
Volume 71 (2020 - 2021)
-
Volume 70 (2020)
-
Volume 69 (2019)
-
Volume 68 (2018)
-
Volume 67 (2017)
-
Volume 66 (2016)
-
Volume 65 (2015)
-
Volume 64 (2014)
-
Volume 63 (2013)
-
Volume 62 (2012)
-
Volume 61 (2011)
-
Volume 60 (2010)
-
Volume 59 (2009)
-
Volume 58 (2008)
-
Volume 57 (2007)
-
Volume 56 (2006)
-
Volume 55 (2005)
-
Volume 54 (2004)
-
Volume 53 (2003)
-
Volume 52 (2002)
-
Volume 51 (2001)
-
Volume 50 (2000)
-
Volume 49 (1999)
-
Volume 48 (1998)
-
Volume 47 (1997)
-
Volume 46 (1996)
-
Volume 45 (1995)
-
Volume 44 (1994)
-
Volume 43 (1993)
-
Volume 42 (1992)
-
Volume 41 (1991)
-
Volume 40 (1990)
-
Volume 39 (1989)
-
Volume 38 (1988)
-
Volume 37 (1987)
-
Volume 36 (1986)
-
Volume 35 (1985)
-
Volume 34 (1984)
-
Volume 33 (1983)
-
Volume 32 (1982)
-
Volume 31 (1981)
-
Volume 30 (1980)
-
Volume 29 (1979)
-
Volume 28 (1978)
-
Volume 27 (1977)
-
Volume 26 (1976)
-
Volume 25 (1975)
-
Volume 24 (1974)
-
Volume 23 (1973)
-
Volume 22 (1972)
-
Volume 21 (1971)
-
Volume 20 (1970)
-
Volume 19 (1969)
-
Volume 18 (1968)
-
Volume 17 (1967)
-
Volume 16 (1966)
-
Volume 15 (1965)
-
Volume 14 (1964)
-
Volume 13 (1963)
-
Volume 12 (1962)
-
Volume 11 (1961)
-
Volume 10 (1960)
-
Volume 9 (1959)
-
Volume 8 (1958)
-
Volume 7 (1957)
-
Volume 6 (1956)
-
Volume 5 (1955)
-
Volume 4 (1954)
-
Volume 3 (1953)
-
Volume 2 (1952)
-
Volume 1 (1951)
Most Read This Month
