1887

Abstract

Eight strains of symbiotic bacteria from root nodules of local races of cowpea () and Bambara groundnut () grown on subsistence farmers’ fields in the Kavango region, Namibia, were previously characterized and identified as a novel group within the genus . To clarify their taxonomic status, these strains were further characterized using a polyphasic approach. In phylogenetic analysis of the 16S rRNA gene sequence the novel group was most closely related to EK05 and BR 10250, and to ‘’ CCBAU 051107 in the ITS sequence analysis. Phylogenetic analysis of concatenated sequences placed the strains in a lineage distinct from named species of the genus . The species status was validated by results of DNA–DNA hybridization. Phylogenetic analysis of and genes placed the novel strains in a group with ’’ CCBAU 051107. The combination of phenotypic characteristics from several tests including carbon source utilization and antibiotic resistance could be used to differentiate representative strains from recognized species of the genus . Novel strain 14-3 induces effective nodules on and Based on the data presented, it is concluded that the strains represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 14-3 [ = DSM 100299 = LMG 28790 = NTCCM 0012 (Windhoek)]. The DNA G+C content of strain 14-3 is 63.8 mol% ( ).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000666
2015-12-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/12/4886.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000666&mimeType=html&fmt=ahah

References

  1. Burbano C. S. , Liu Y. , Rösner K. L. , Reis V. M. , Caballero-Mellado J. , Reinhold-Hurek B. , Hurek T. . ( 2011;). Predominant nifH transcript phylotypes related to Rhizobium rosettiformans in field-grown sugarcane plants and in Norway spruce. Environ Microbiol Rep 3: 383–389 [CrossRef] [PubMed].
    [Google Scholar]
  2. Edgar R. C. . ( 2004;). muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797 [CrossRef] [PubMed].
    [Google Scholar]
  3. Felsenstein J. . ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  4. Gao J. L. , Sun J. G. , Li Y. , Wang E. T. , Chen W. X. . ( 1994;). Numerical taxonomy and DNA relatedness of tropical rhizobia isolated from Hainan province, China. Int J Syst Bacteriol 44: 151–158.[CrossRef]
    [Google Scholar]
  5. Grönemeyer J. , Berkelmann D. , Mubyana-John T. , Haiyambo D. , Chimwamurombe P. , Kasaona B. , Hurek T. , Reinhold-Hurek B. . ( 2013;). A survey for plant-growth-promoting rhizobacteria and symbionts associated with crop plants in the Okavango region or Southern Africa. Biodiv Ecol 5: 287–294 [CrossRef].
    [Google Scholar]
  6. Grönemeyer J. L. , Burbano C. S. , Hurek T. , Reinhold-Hurek B. . ( 2012;). Isolation and characterization of root-associated bacteria from agricultural crops in the Kavango region of Namibia. Plant Soil 356: 67–82.[CrossRef]
    [Google Scholar]
  7. Grönemeyer J. L. , Kulkarni A. , Berkelmann D. , Hurek T. , Reinhold-Hurek B. . ( 2014;). Rhizobia indigenous to the Okavango Region in sub-Saharan Africa: diversity, adaptations, and host specificity. Appl Environ Microbiol 80: 7244–7257 [CrossRef] [PubMed].
    [Google Scholar]
  8. Laguerre G. , Mavingui P. , Allard M. R. , Charnay M. P. , Louvrier P. , Mazurier S. I. , Rigottier-Gois L. , Amarger N. . ( 1996;). Typing of rhizobia by PCR DNA fingerprinting and PCR-restriction fragment length polymorphism analysis of chromosomal and symbiotic gene regions: application to Rhizobium leguminosarum and its different biovars. Appl Environ Microbiol 62: 2029–2036 [PubMed].
    [Google Scholar]
  9. Larkin M. A. , Blackshields G. , Brown N. P. , Chenna R. , McGettigan P. A. , McWilliam H. , Valentin F. , Wallace I. M. , Wilm A. , other authors . ( 2007;). clustal w clustal x version 2.0. Bioinformatics 23: 2947–2948 [CrossRef] [PubMed].
    [Google Scholar]
  10. Lu J. K. , Dou Y. J. , Zhu Y. J. , Wang S. K. , Sui X. H. , Kang L. H. . ( 2014;). Bradyrhizobium ganzhouense sp. nov., an effective symbiotic bacterium isolated from Acacia melanoxylon R. Br. nodules. Int J Syst Evol Microbiol 64: 1900–1905 [CrossRef] [PubMed].
    [Google Scholar]
  11. Mpepereki S. , Pompi I. . ( 2003;). Promoting new BNF technologies among smallholder farmers: a success story from Zimbabwe. . In Grain legumes and green manures for soil fertility in Southern Africa: Taking stock of progress. Proceedings of a conference held 8–11 October 2002 at umba, Zimbabwe. Soil Fertil. Net and CIMMYT-Zimbabwe, Harare, Zimbabwe, pp. 33–38. Edited by Waddington S. R. . .
    [Google Scholar]
  12. Posada D. , Crandall K. A. . ( 1998;). modeltest: testing the model of DNA substitution. Bioinformatics 14: 817–818 [CrossRef] [PubMed].
    [Google Scholar]
  13. Pröpper M. , Gröngröft A. , Falk T. , Eschenbach A. , Fox T. , Gessner U. , Hecht J. , Hinz M. O. , Hoettich C. , other authors . ( 2010;). Causes and perspectives of land-cover change through expanding cultivation in Kavango. . In Biodiversity in Southern Africa 3: Implications for Landuse and Management, pp. 2–31. Edited by Jürgens N. , Schmiedel U. , Hoffman T. . Göttingen, Windhoek: Klaus Hess;.
    [Google Scholar]
  14. Ramírez-Bahena M. H. , Chahboune R. , Velázquez E. , Gómez-Moriano A. , Mora E. , Peix A. , Toro M. . ( 2013;). Centrosema is a promiscuous legume nodulated by several new putative species and symbiovars of Bradyrhizobium in various American countries. Syst Appl Microbiol 36: 392–400 [CrossRef] [PubMed].
    [Google Scholar]
  15. Rivas R. , Martens M. , de Lajudie P. , Willems A. . ( 2009;). Multilocus sequence analysis of the genus Bradyrhizobium . Syst Appl Microbiol 32: 101–110 [CrossRef] [PubMed].
    [Google Scholar]
  16. Sarita S. , Sharma P. K. , Priefer U. B. , Prell J. . ( 2005;). Direct amplification of rhizobial nodC sequences from soil total DNA and comparison to nodC diversity of root nodule isolates. FEMS Microbiol Ecol 54: 1–11 [CrossRef] [PubMed].
    [Google Scholar]
  17. Schwarz G. . ( 1978;). Estimating the dimension of a model. Ann Stat 6: 461–464 [CrossRef].
    [Google Scholar]
  18. Stackebrandt E. , Ebers J. . ( 2006;). Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33: 152–155.
    [Google Scholar]
  19. Stepkowski T. , Moulin L. , Krzyzańska A. , McInnes A. , Law I. J. , Howieson J. . ( 2005;). European origin of Bradyrhizobium populations infecting lupins and serradella in soils of Western Australia and South Africa. Appl Environ Microbiol 71: 7041–7052 [CrossRef] [PubMed].
    [Google Scholar]
  20. Stepkowski T. , Hughes C. E. , Law I. J. , Markiewicz Ł. , Gurda D. , Chlebicka A. , Moulin L. . ( 2007;). Diversification of lupine Bradyrhizobium strains: evidence from nodulation gene trees. Appl Environ Microbiol 73: 3254–3264 [CrossRef] [PubMed].
    [Google Scholar]
  21. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  22. van Berkum P. . ( 1990;). Evidence for a third uptake hydrogenase phenotype among the soybean Bradyrhizobia. Appl Environ Microbiol 56: 3835–3841 [PubMed].
    [Google Scholar]
  23. Vincent J. M. . ( 1970;). A Manual for the Practical Study of the Root Nodule Bacteria., Oxford, UK: Blackwell Scientific;.
    [Google Scholar]
  24. Vinuesa P. , Silva C. , Werner D. , Martínez-Romero E. . ( 2005;). Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol Phylogenet Evol 34: 29–54 [CrossRef] [PubMed].
    [Google Scholar]
  25. Vinuesa P. , Rojas-Jiménez K. , Contreras-Moreira B. , Mahna S. K. , Prasad B. N. , Moe H. , Selvaraju S. B. , Thierfelder H. , Werner D. . ( 2008;). Multilocus sequence analysis for assessment of the biogeography and evolutionary genetics of four Bradyrhizobium species that nodulate soybeans on the asiatic continent. Appl Environ Microbiol 74: 6987–6996 [CrossRef] [PubMed].
    [Google Scholar]
  26. Willems A. , Doignon-Bourcier F. , Goris J. , Coopman R. , de Lajudie P. , De Vos P. , Gillis M. . ( 2001;). DNA-DNA hybridization study of Bradyrhizobium strains. Int J Syst Evol Microbiol 51: 1315–1322 [CrossRef] [PubMed].
    [Google Scholar]
  27. Willems A. , Munive A. , de Lajudie P. , Gillis M. . ( 2003;). In most Bradyrhizobium groups sequence comparison of 16S-23S rDNA internal transcribed spacer regions corroborates DNA-DNA hybridizations. Syst Appl Microbiol 26: 203–210 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000666
Loading
/content/journal/ijsem/10.1099/ijsem.0.000666
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error