1887

Abstract

Species demarcation in and is mainly based on overall genome relatedness, which serves a framework for modern microbiology. Current practice for obtaining these measures between two strains is shifting from experimentally determined similarity obtained by DNA–DNA hybridization (DDH) to genome-sequence-based similarity. Average nucleotide identity (ANI) is a simple algorithm that mimics DDH. Like DDH, ANI values between two genome sequences may be different from each other when reciprocal calculations are compared. We compared 63 690 pairs of genome sequences and found that the differences in reciprocal ANI values are significantly high, exceeding 1 % in some cases. To resolve this problem of not being symmetrical, a new algorithm, named OrthoANI, was developed to accommodate the concept of orthology for which both genome sequences were fragmented and only orthologous fragment pairs taken into consideration for calculating nucleotide identities. OrthoANI is highly correlated with ANI (using n) and the former showed approximately 0.1 % higher values than the latter. In conclusion, OrthoANI provides a more robust and faster means of calculating average nucleotide identity for taxonomic purposes. The standalone software tools are freely available at http://www.ezbiocloud.net/sw/oat.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000760
2016-02-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/1100.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000760&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402 [CrossRef] [PubMed].
    [Google Scholar]
  2. Beaz-Hidalgo R., Hossain M. J., Liles M. R., Figueras M. J.. ( 2015;). Strategies to avoid wrongly labelled genomes using as example the detected wrong taxonomic affiliation for Aeromonas genomes in the GenBank database. PLoS One 10: e0115813 [CrossRef] [PubMed].
    [Google Scholar]
  3. Chun J., Rainey F. A.. ( 2014;). Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol 64: 316–324 [CrossRef] [PubMed].
    [Google Scholar]
  4. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M.. ( 2007;). DNA − DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57: 81–91 [CrossRef] [PubMed].
    [Google Scholar]
  5. Johnson J. L., Whitman W. B.. ( 2007;). Similarity Analysis of DNAs. . In Methods for General and Molecular Microbiology, pp. 624–652. Edited by Reddy C. A.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  6. Kim M., Oh H. S., Park S. C., Chun J.. ( 2014;). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64: 346–351 [CrossRef] [PubMed].
    [Google Scholar]
  7. Konstantinidis K. T., Tiedje J. M.. ( 2005;). Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 102: 2567–2572 [CrossRef] [PubMed].
    [Google Scholar]
  8. Li X., Huang Y., Whitman W. B.. ( 2015;). The relationship of the whole genome sequence identity to DNA hybridization varies between genera of prokaryotes. Antonie van Leeuwenhoek 107: 241–249 [CrossRef] [PubMed].
    [Google Scholar]
  9. Meier-Kolthoff J. P., Auch A. F., Klenk H. P., Göker M.. ( 2013;). Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14: 60 [CrossRef] [PubMed].
    [Google Scholar]
  10. Richter M., Rosselló-Móra R.. ( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106: 19126–19131 [CrossRef] [PubMed].
    [Google Scholar]
  11. Rosselló-Móra R., Amann R.. ( 2015;). Past and future species definitions for Bacteria and Archaea. Syst Appl Microbiol 38: 209–216 [CrossRef] [PubMed].
    [Google Scholar]
  12. Stropko S. J., Pipes S. E., Newman J. D.. ( 2014;). Genome-based reclassification of Bacillus cibi as a later heterotypic synonym of Bacillus indicus and emended description of Bacillus indicus. Int J Syst Evol Microbiol 64: 3804–3809 [CrossRef] [PubMed].
    [Google Scholar]
  13. Tindall B. J., Rosselló-Móra R., Busse H. J., Ludwig W., Kämpfer P.. ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60: 249–266 [CrossRef] [PubMed].
    [Google Scholar]
  14. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D, Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C, Murray R. G. E, other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  15. Yi H., Chun J.. ( 2015;). Neisseria weaveri Andersen et al. 1993 is a later heterotypic synonym of Neisseria weaveri Holmes et al. 1993. Int J Syst Evol Microbiol 65: 463–464 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000760
Loading
/content/journal/ijsem/10.1099/ijsem.0.000760
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Supplementary Data



Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error