1887

Abstract

Biochemical and molecular genetic studies were performed on three novel Gram-stain-negative, catalase- and oxidase-positive, bacilli-shaped organisms isolated from the tonsils of two pigs and one wild boar. The micro-organism was identified as a species of the genus based on its cellular morphological and biochemical tests. The closest phylogenetic relative of the novel bacilli was HM-7 (98.2 % 16S rRNA gene sequence similarity to the type strain). and sequence analysis showed interspecies divergence from the closest 16S rRNA gene phylogenetic relative, of 87.0.% and 69 %, respectively. The polyamine pattern contains predominantly putrescine and 2-hydroxyputrescine. The major quinone is ubiquinone Q-8 and in the polar lipid profile, phosphatidylethanolamine, phosphatidylglycerol, an unidentified aminolipid and an unidentified lipid are predominant. The novel bacterial isolate can be distinguished from by several biochemical characteristics, such as the production of -pyrrolydonil arylamidase but not gamma-glutamyl-transferase, and the utilization of different carbon sources. Based on both phenotypic and phylogenetic findings, the novel bacterium is classified as representing a novel species of the genus for which the name sp. nov. is proposed. The type strain is 3340-03 ( = CECT 8400 = CCUG 64465).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000673
2015-12-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/12/4909.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000673&mimeType=html&fmt=ahah

References

  1. Alispahic M., Hummel K., Jandreski-Cvetkovic D., Nöbauer K., Razzazi-Fazeli E., Hess M., Hess C.. ( 2010;). Species-specific identification and differentiation of Arcobacter, Helicobacter and Campylobacter by full-spectral matrix-associated laser desorption/ionization time of flight mass spectrometry analysis. J Med Microbiol 59: 295–301 [CrossRef] [PubMed].
    [Google Scholar]
  2. Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H.-J.. ( 1996;). Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47: 39–52 [CrossRef].
    [Google Scholar]
  3. Blümel S., Mark B., Busse H.-J., Kämpfer P., Stolz A.. ( 2001;). Pigmentiphaga kullae gen. nov., sp. nov., a novel member of the family Alcaligenaceae with the ability to decolorize azo dyes aerobically. Int J Syst Evol Microbiol 51: 1867–1871 [CrossRef] [PubMed].
    [Google Scholar]
  4. Böhme K., Fernández-No I. C., Barros-Velázquez J., Gallardo J. M., Calo-Mata P., Cañas B.. ( 2010;). Species differentiation of seafood spoilage and pathogenic Gram-negative bacteria by MALDI-TOF mass fingerprinting. J Proteome Res 9: 3169–3183 [CrossRef] [PubMed].
    [Google Scholar]
  5. Busse H.-J., Auling G.. ( 1988;). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11: 1–8 [CrossRef].
    [Google Scholar]
  6. Busse H.-J., el-Banna T., Oyaizu H., Auling G.. ( 1992;). Identification of xenobiotic-degrading isolates from the beta subclass of the Proteobacteria by a polyphasic approach including 16S rRNA partial sequencing. Int J Syst Bacteriol 42: 19–26 [CrossRef] [PubMed].
    [Google Scholar]
  7. Busse H.-J., Bunka S., Hensel A., Lubitz W.. ( 1997;). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47: 698–708 [CrossRef].
    [Google Scholar]
  8. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. ( 1977;). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81: 461–466 [CrossRef] [PubMed].
    [Google Scholar]
  9. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12: 133–142 [CrossRef] [PubMed].
    [Google Scholar]
  10. Facklam R., Elliott J. A.. ( 1995;). Identification, classification, and clinical relevance of catalase-negative, gram-positive cocci, excluding the streptococci and enterococci. Clin Microbiol Rev 8: 479–495 [PubMed].
    [Google Scholar]
  11. García N., Fernández-Garayzábal J. F., Goyache J., Domínguez L., Vela A. I.. ( 2011;). Associations between biovar and virulence factor genes in Pasteurella multocida isolates from pigs in Spain. Vet Rec 169: 362–366 [CrossRef] [PubMed].
    [Google Scholar]
  12. Guindon S., Gascuel O.. ( 2003;). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52: 696–704 [CrossRef] [PubMed].
    [Google Scholar]
  13. Huss V.A.R., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4: 184–192 [CrossRef] [PubMed].
    [Google Scholar]
  14. Kämpfer P., Denger K., Cook A. M., Lee S.-T., Jäckel U., Denner E.B.M., Busse H.-J.. ( 2006;). Castellaniella gen. nov., to accommodate the phylogenetic lineage of Alcaligenes defragrans, and proposal of Castellaniella defragrans gen. nov., comb. nov. and Castellaniella denitrificans sp. nov. Int J Syst Evol Microbiol 56: 815–819 [CrossRef] [PubMed].
    [Google Scholar]
  15. Kämpfer P., Falsen E., Langer S., Lodders N., Busse H.-J.. ( 2010;). Paenalcaligenes hominis gen. nov., sp. nov., a new member of the family Alcaligenaceae. Int J Syst Evol Microbiol 60: 1537–1542 [CrossRef] [PubMed].
    [Google Scholar]
  16. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  17. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120 [CrossRef] [PubMed].
    [Google Scholar]
  18. Li L., Praet J., Borremans W., Nunes O. C., Manaia C. M., Cleenwerck I., Meeus I., Smagghe G., De Vuyst L., Vandamme P.. ( 2015;). Bombella intestini gen. nov., sp. nov., an acetic acid bacterium isolated from bumble bee crop. Int J Syst Evol Microbiol 65: 267–273 [CrossRef] [PubMed].
    [Google Scholar]
  19. Liu H., Du Z., Wang J., Yang R.. ( 2007;). Universal sample preparation method for characterization of bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 73: 1899–1907 [CrossRef] [PubMed].
    [Google Scholar]
  20. Page R.D.M.. ( 1996;). TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12: 357–358 [PubMed].
    [Google Scholar]
  21. Prakash O., Munot H., Nimonkar Y., Sharma M., Kumbhare S., Shouche Y. S.. ( 2014;). Description of Pelistega indica sp. nov., isolated from human gut. Int J Syst Evol Microbiol 64: 1389–1394 [CrossRef] [PubMed].
    [Google Scholar]
  22. Rasis M., Rudoler N., Schwartz D., Giladi M.. ( 2014;). Bartonella dromedarii sp. nov. isolated from domesticated camels (Camelus dromedarius) in Israel. Vector Borne Zoonotic Dis 14: 775–782 [CrossRef] [PubMed].
    [Google Scholar]
  23. Rasmussen S. W.. ( 2002;). SeqTools, a Program Suite for Sequence Analysis., Copenhagen: Carlsberg Laboratory;.
    [Google Scholar]
  24. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  25. Stolz A., Bürger S., Kuhm A., Kämpfer P., Busse H.-J.. ( 2005;). Pusillimonas noertemannii gen. nov., sp. nov., a new member of the family Alcaligenaceae that degrades substituted salicylates. Int J Syst Evol Microbiol 55: 1077–1081 [CrossRef] [PubMed].
    [Google Scholar]
  26. Stolz A., Busse H.-J., Kämpfer P.. ( 2007;). Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 57: 572–576 [CrossRef] [PubMed].
    [Google Scholar]
  27. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24: 1596–1599 [CrossRef] [PubMed].
    [Google Scholar]
  28. Tindall B. J.. ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13: 128–130 [CrossRef].
    [Google Scholar]
  29. Tindall B. J.. ( 1990b;). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66: 199–202 [CrossRef].
    [Google Scholar]
  30. Tindall B. J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P.. ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60: 249–266 [CrossRef] [PubMed].
    [Google Scholar]
  31. Vandamme P., Segers P., Ryll M., Hommez J., Vancanneyt M., Coopman R., De Baere R., Van De Peer Y., Kersters K., other authors. ( 1998;). Pelistega europaea gen. nov., sp. nov., a bacterium associated with respiratory disease in pigeons: taxonomic structure and phylogenetic allocation. Int J Syst Bacteriol 48: 431–440 [CrossRef] [PubMed].
    [Google Scholar]
  32. Watanabe K., Nelson J., Harayama S., Kasai H.. ( 2001;). ICB database: the gyrB database for identification and classification of bacteria. Nucleic Acids Res 29: 344–345 [CrossRef] [PubMed].
    [Google Scholar]
  33. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P.A.D., Kandler O., Krichevsky M. I., Moore L. H., Moore W.E.C., Murray R.G.E., other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  34. Yamamoto S., Kasai H., Arnold D. L., Jackson R. W., Vivian A., Harayama S.. ( 2000;). Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 146: 2385–2394 [CrossRef] [PubMed].
    [Google Scholar]
  35. Zhang D.-C., Busse H.-J., Wieser C., Liu H.-C., Zhou Y.-G., Schinner F., Margesin R.. ( 2012;). Candidimonas bauzanensis sp. nov., isolated from soil, and emended description of the genus Candidimonas Vaz-Moreira et al. 2011. Int J Syst Evol Microbiol 62: 2084–2089 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000673
Loading
/content/journal/ijsem/10.1099/ijsem.0.000673
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error