1887

Abstract

The diversity of mucin-degrading bacteria in the human intestine was investigated by combining culture and 16S rRNA-dependent approaches. A dominant bacterium, strain Muc, was isolated by dilution to extinction of faeces in anaerobic medium containing gastric mucin as the sole carbon and nitrogen source. A pure culture was obtained using the anaerobic soft agar technique. Strain Muc was a Gram-negative, strictly anaerobic, non-motile, non-spore-forming, oval-shaped bacterium that could grow singly and in pairs. When grown on mucin medium, cells produced a capsule and were found to aggregate. Strain Muc could grow on a limited number of sugars, including -acetylglucosamine, -acetylgalactosamine and glucose, but only when a protein source was provided and with a lower growth rate and final density than on mucin. The G+C content of DNA from strain Muc was 47·6 mol%. 16S rRNA gene sequence analysis revealed that the isolate was part of the division . The closest described relative of strain Muc was (92 % sequence similarity). Remarkably, the 16S rRNA gene sequence of strain Muc showed 99 % similarity to three uncultured colonic bacteria. According to the data obtained in this work, strain Muc represents a novel bacterium belonging to a new genus in subdivision 1 of the ; the name gen. nov., sp. nov. is proposed; the type strain is Muc (=ATCC BAA-835=CIP 107961).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02873-0
2004-09-01
2024-09-07
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/5/ijs541469.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02873-0&mimeType=html&fmt=ahah

References

  1. Chin K.-J., Liesack W., Janssen P. H. 2001; Opitutus terrae gen. nov., sp. nov., to accommodate novel strains of the division ‘ Verrucomicrobia ’ isolated from rice paddy soil. Int J Syst Evol Microbiol 51:1965–1968 [CrossRef]
    [Google Scholar]
  2. Duncan S. H., Hold G. L., Barcenilla A., Stewart C. S., Flint H. J. 2002; Roseburia intestinalis sp. nov., a novel saccharolytic, butyrate-producing bacterium from human faeces. Int J Syst Evol Microbiol 52:1615–1620 [CrossRef]
    [Google Scholar]
  3. Hedlund B. P., Gosink J. J., Staley J. T. 1997; Verrucomicrobia div. nov., a new division of the Bacteria containing three new species of Prosthecobacter . Antonie van Leeuwenhoek 72:29–38 [CrossRef]
    [Google Scholar]
  4. Hold G. L., Pryde S. E., Russell V. J., Furrie E., Flint H. J. 2002; Assessment of microbial diversity in human colonic samples by 16S rDNA sequence analysis. FEMS Microbiol Ecol 39:33–39 [CrossRef]
    [Google Scholar]
  5. Hooper L. V., Gordon J. I. 2001; Commensal host-bacterial relationships in the gut. Science 292:1115–1118 [CrossRef]
    [Google Scholar]
  6. Hoskins L. C., Boulding E. T. 1981; Mucin degradation in human colon ecosytems. Evidence for the existence and role of bacterial subpopulations producing glycosidases as extracellular enzymes. J Clin Invest 67:163–172 [CrossRef]
    [Google Scholar]
  7. Hugenholtz P., Goebel B. M., Pace N. R. 1998; Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774
    [Google Scholar]
  8. Janssen P. H., Schuhmann A., Mörschel E., Rainey F. A. 1997; Novel anaerobic ultramicrobacteria belonging to the Verrucomicrobiales lineage of bacterial descent isolated by dilution culture from anoxic rice paddy soil. Appl Environ Microbiol 63:1382–1388
    [Google Scholar]
  9. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp  115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: John Wiley;
    [Google Scholar]
  10. Lawson A. J., On S. L. W., Logan J. M. J., Stanley J. 2001; Campylobacter hominis sp. nov., from the human gastrointestinal tract. Int J Syst Evol Microbiol 51:651–660
    [Google Scholar]
  11. Lesuffleur T., Barbat A., Dussaulx E., Zweibaum A. 1990; Growth adaptation to methotrexate of HT-29 human colon carcinoma cells is associated with their ability to differentiate into columnar absorptive and mucus-secreting cells. Cancer Res 50:6334–6343
    [Google Scholar]
  12. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  13. Miller R. S., Hoskins L. C. 1981; Mucin degradation in human colon ecosystems. Fecal population densities of mucin-degrading bacteria estimated by a ‘most probable number’ method. Gastroenterology 81:759–765
    [Google Scholar]
  14. Muyzer G., de Waal E. C., Uitterlinden A. G. 1993; Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700
    [Google Scholar]
  15. Nübel U., Engelen B., Felske A., Snaidr J., Wieshuber A., Amann R. I., Ludwig W., Backhaus H. 1996; Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178:5636–5643
    [Google Scholar]
  16. Plugge C. M., Zoetendal E. G., Stams A. J. M. 2000; Caloramator coolhaasii sp. nov., a glutamate-degrading, moderately thermophilic anaerobe. Int J Syst Evol Microbiol 50:1155–1162 [CrossRef]
    [Google Scholar]
  17. Ruseler-van Embden J. G. H., van Lieshout L. M. C., Gosselink M. J., Marteau P. 1995; Inability of Lactobacillus casei strain GG, L. acidophilus , and Bifidobacterium bifidum to degrade intestinal mucus glycoproteins. Scand J Gastroenterol 30:675–680 [CrossRef]
    [Google Scholar]
  18. Salyers A. A., West S. E. H., Vercellotti J. R., Wilkins T. D. 1977; Fermentation of mucins and plant polysaccharides by anaerobic bacteria from the human colon. Appl Environ Microbiol 34:529–533
    [Google Scholar]
  19. Salzman N. H., de Jong H., Paterson Y., Harmsen H. J. M., Welling G. W., Bos N. A. 2002; Analysis of 16S libraries of mouse gastrointestinal microflora reveals a large new group of mouse intestinal bacteria. Microbiology 148:3651–3660
    [Google Scholar]
  20. Sanguinetti C. J., Dias Neto E., Simpson A. J. G. 1994; Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17:914–921
    [Google Scholar]
  21. Schlesner H. 1987; Verrucomicrobium spinosum gen. nov., sp. nov. a fimbriated prosthecate bacterium. Syst Appl Microbiol 10:54–56 [CrossRef]
    [Google Scholar]
  22. Schwiertz A., Hold G. L., Duncan S. H., Gruhl B., Collins M. D., Lawson P. A., Flint H. J., Blaut M. 2002; Anaerostipes caccae gen. nov., sp. nov., a new saccharolytic, acetate-utilising, butyrate-producing bacterium from human faeces. Syst Appl Microbiol 25:46–51 [CrossRef]
    [Google Scholar]
  23. Simmering R., Taras D., Schwiertz A., Le Blay G., Gruhl B., Lawson P. A., Collins M. D., Blaut M. 2002; Ruminococcus luti sp. nov., isolated from a human faecal sample. Syst Appl Microbiol 25:189–193 [CrossRef]
    [Google Scholar]
  24. Staley J. T., Bont J. A. M., Jonge K. 1976; Prosthecobacter fusiformis nov. gen. et sp., the fusiform caulobacter. Antonie van Leeuwenhoek 42:333–342 [CrossRef]
    [Google Scholar]
  25. Stams A. J. M., van Dijk J. B., Dijkema C., Plugge C. M. 1993; Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl Environ Microbiol 59:1114–1119
    [Google Scholar]
  26. Strunk O., Ludwig W. 1995 arb – a software environment for sequence data Department of Microbiology, Technical University of Munich; Munich, Germany: http://www.arb-home.de/
    [Google Scholar]
  27. Suau A., Bonnet R., Sutren M., Godon J.-J., Gibson G. R., Collins M. D., Doré J. 1999; Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65:4799–4807
    [Google Scholar]
  28. Taras D., Simmering R., Collins M. D., Lawson P. A., Blaut M. 2002; Reclassification of Eubacterium formicigenerans Holdeman and Moore 1974 as Dorea formicigenerans gen. nov., comb. nov., and description of Dorea longicatena sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 52:423–428
    [Google Scholar]
  29. Vaughan E. E., Schut F., Heilig H. G. H. J., Zoetendal E. G., de Vos W. M., Akkermans A. D. L. 2000; A molecular view of the intestinal ecosystem. Curr Issues Intest Microbiol 1:1–12
    [Google Scholar]
  30. Willis C. L., Cummings J. H., Neale G., Gibson G. R. 1996; In vitro effects of mucin fermentation on the growth of human colonic sulphate-reducing bacteria. Anaerobe 2:117–122 [CrossRef]
    [Google Scholar]
  31. Wilson K. H., Blitchington R. B. 1996; Human colonic biota studied by ribosomal DNA sequence analysis. Appl Environ Microbiol 62:2273–2278
    [Google Scholar]
  32. Zhou J. S., Gopal P. K., Gill H. S. 2001; Potential probiotic lactic acid bacteria Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019) do not degrade gastric mucin in vitro . Int J Food Microbiol 63:81–90 [CrossRef]
    [Google Scholar]
  33. Zoetendal E. G., Akkermans A. D. L., de Vos W. M. 1998; Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64:3854–3859
    [Google Scholar]
  34. Zoetendal E. G., Plugge C. M., Akkermans A. D. L., de Vos W. M. 2003; Victivallis vadensis gen. nov., sp. nov., a sugar-fermenting anaerobe from human faeces. Int J Syst Evol Microbiol 53:211–215 [CrossRef]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.02873-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02873-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error