1887

Abstract

Three strains of anaerobic Gram-stain-negative, short to longer rod-shaped bacteria isolated from the caecum of chicken in Indonesia were studied using a polyphasic taxonomic approach. These strains belonged to the genus , based on sequence analysis of 16S rRNA and () genes, with similarities of 93.2–94.1 and 89.8–90.8 %, respectively, to the closest recognized species, JCM 17929. Sugar fermentation and enzyme characteristics, cellular fatty acid profiles, menaquinone profiles and metabolic end products were also investigated. Furthermore, DNA–DNA hybridization studies confirmed that the three novel strains are different from the closest related species. The strains were also found to be distinct from each other on the basis of ribotype profiles. The DNA G+C contents of the three strains were 41.1–41.8 mol%. Based on phenotypic and phylogenetic characteristics, a novel species, sp. nov., is proposed (type strain C13EG111 = LIPI12-4-Ck773 = JSAT12-4-Ck773 = InaCC B455 = NBRC 110959).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000573
2015-12-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/12/4341.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000573&mimeType=html&fmt=ahah

References

  1. Barnes E. M.. ( 1972;). The avian intestinal flora with particular reference to the possible ecological significance of the cecal anaerobic bacteria. Am J Clin Nutr 25: 1475–1479 [PubMed].
    [Google Scholar]
  2. Darriba D., Taboada G. L., Doallo R., Posada D.. ( 2012;). jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9: 772 [CrossRef] [PubMed].
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39: 224–229 [CrossRef].
    [Google Scholar]
  4. Guindon S., Gascuel O.. ( 2003;). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52: 696–704 [CrossRef] [PubMed].
    [Google Scholar]
  5. Hayashi H., Shibata K., Bakir M. A., Sakamoto M., Tomita S., Benno Y.. ( 2007;). Bacteroides coprophilus sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 57: 1323–1326 [CrossRef] [PubMed].
    [Google Scholar]
  6. Kitahara M., Takamine F., Imamura T., Benno Y.. ( 2001;). Clostridium hiranonis sp. nov., a human intestinal bacterium with bile acid 7α-dehydroxylating activity. Int J Syst Evol Microbiol 51: 39–44 [CrossRef] [PubMed].
    [Google Scholar]
  7. Kitahara M., Sakamoto M., Ike M., Sakata S., Benno Y.. ( 2005;). Bacteroides plebeius sp. nov. and Bacteroides coprocola sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 55: 2143–2147 [CrossRef] [PubMed].
    [Google Scholar]
  8. Kitahara M., Sakamoto M., Benno Y.. ( 2010;). Lactobacillus similis sp. nov., isolated from fermented cane molasses. Int J Syst Evol Microbiol 60: 187–190 [CrossRef] [PubMed].
    [Google Scholar]
  9. Lan P.T.N., Hayashi H., Sakamoto M., Benno Y.. ( 2002;). Phylogenetic analysis of cecal microbiota in chicken by the use of 16S rDNA clone libraries. Microbiol Immunol 46: 371–382 [CrossRef] [PubMed].
    [Google Scholar]
  10. Lan P.T.N., Sakamoto M., Sakata S., Benno Y.. ( 2006;). Bacteroides barnesiae sp. nov., Bacteroides salanitronis sp. nov. and Bacteroides gallinarum sp. nov., isolated from chicken caecum. Int J Syst Evol Microbiol 56: 2853–2859 [CrossRef] [PubMed].
    [Google Scholar]
  11. Lu J., Idris U., Harmon B., Hofacre C., Maurer J. J., Lee M. D.. ( 2003;). Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Appl Environ Microbiol 69: 6816–6824 [CrossRef] [PubMed].
    [Google Scholar]
  12. Mayberry W. R., Lambe D. W. Jr, Ferguson K. P.. ( 1982;). Identification of Bacteroides species by cellular fatty acid profiles. Int J Syst Bacteriol 32: 21–27 [CrossRef].
    [Google Scholar]
  13. Miyagawa E., Azuma R., Suto T.. ( 1979;). Cellular fatty acid composition in gram-negative obligately anaerobic rods. J Gen Appl Microbiol 25: 41–51 [CrossRef].
    [Google Scholar]
  14. Sakamoto M., Suzuki M., Umeda M., Ishikawa I., Benno Y.. ( 2002;). Reclassification of Bacteroides forsythus (Tanner et al. 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov. Int J Syst Evol Microbiol 52: 841–849 [PubMed].
    [Google Scholar]
  15. Sakamoto M., Suzuki M., Huang Y., Umeda M., Ishikawa I., Benno Y.. ( 2004;). Prevotella shahii sp. nov. and Prevotella salivae sp. nov., isolated from the human oral cavity. Int J Syst Evol Microbiol 54: 877–883 [CrossRef] [PubMed].
    [Google Scholar]
  16. Sakamoto M., Huang Y., Umeda M., Ishikawa I., Benno Y.. ( 2005;). Prevotella multiformis sp. nov., isolated from human subgingival plaque. Int J Syst Evol Microbiol 55: 815–819 [CrossRef] [PubMed].
    [Google Scholar]
  17. Sakamoto M., Suzuki N., Benno Y.. ( 2010;). hsp60 and 16S rRNA gene sequence relationships among species of the genus Bacteroides with the finding that Bacteroides suis and Bacteroides tectus are heterotypic synonyms of Bacteroides pyogenes. Int J Syst Evol Microbiol 60: 2984–2990 [CrossRef] [PubMed].
    [Google Scholar]
  18. Salanitro J. P., Blake I. G., Muirhead P. A.. ( 1974;). Studies on the cecal microflora of commercial broiler chickens. Appl Microbiol 28: 439–447 [PubMed].
    [Google Scholar]
  19. Salanitro J. P., Blake I. G., Muirehead P. A., Maglio M., Goodman J. R.. ( 1978;). Bacteria isolated from the duodenum, ileum, and cecum of young chicks. Appl Environ Microbiol 35: 782–790 [PubMed].
    [Google Scholar]
  20. Shah H. N.. ( 1992;). The genus Bacteroides and related taxa. . In The Prokaryotes, 2nd edn., pp. 3593–3607. Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H.. New York: Springer; [CrossRef].
    [Google Scholar]
  21. Shah H. N., Collins M. D.. ( 1983;). Genus Bacteroides. A chemotaxonomical perspective. J Appl Bacteriol 55: 403–416 [CrossRef] [PubMed].
    [Google Scholar]
  22. Stanley D., Hughes R. J., Moore R. J.. ( 2014;). Microbiota of the chicken gastrointestinal tract: influence on health, productivity and disease. Appl Microbiol Biotechnol 98: 4301–4310 [CrossRef] [PubMed].
    [Google Scholar]
  23. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25: 125–128 [CrossRef].
    [Google Scholar]
  24. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P.A.D., Kandler O., Krichevsky M. I., Moore L. H., Moore W.E.C., Murray R.G.E., other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  25. Zhu X. Y., Zhong T., Pandya Y., Joerger R. D.. ( 2002;). 16S rRNA-based analysis of microbiota from the cecum of broiler chickens. Appl Environ Microbiol 68: 124–137 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000573
Loading
/content/journal/ijsem/10.1099/ijsem.0.000573
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error