1887

Abstract

The genus comprises 261 species (at March 2020) that are extremely diverse at phenotypic, ecological and genotypic levels. This study evaluated the taxonomy of and on the basis of whole genome sequences. Parameters that were evaluated included core genome phylogeny, (conserved) pairwise average amino acid identity, clade-specific signature genes, physiological criteria and the ecology of the organisms. Based on this polyphasic approach, we propose reclassification of the genus into 25 genera including the emended genus which includes host-adapted organisms that have been referred to as the group, and 23 novel genera for which the names , , , , , , , , , , , , , , , , , , , , , and are proposed. We also propose to emend the description of the family to include all genera that were previously included in families and . The generic term ‘lactobacilli’ will remain useful to designate all organisms that were classified as until 2020. This reclassification reflects the phylogenetic position of the micro-organisms, and groups lactobacilli into robust clades with shared ecological and metabolic properties, as exemplified for the emended genus encompassing species adapted to vertebrates (such as , , , , and ) or invertebrates (such as and ).

Funding
This study was supported by the:
  • Sarah Lebeer , Agentschap voor Innovatie door Wetenschap en Technologie , (Award IWT-SBO project 150052)
  • Michael Gaenzle , Canada Research Chairs , (Award Food Microbiology and Probiotics)
  • Stijn Wittouck , Fonds Wetenschappelijk Onderzoek (BE)
  • Jinshui Zheng , National Natural Science Foundation of China , (Award 31970003 and 31770003)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004107
2020-04-15
2020-06-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/4/2782.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004107&mimeType=html&fmt=ahah

References

  1. Schleifer K-H. Family V. Leuconostocaceae fam. nov . In De Vos P, Garrity G, Jones D, Krieg N, Ludwig W et al. (editors) Bergey’s Man. Syst. Bacteriol. (The Firmicutes) 3, 2nd ed. Dordrecht, Heidelberg, London: Springer; 2009 p 624
    [Google Scholar]
  2. Orla-Jensen S. The lactic acid bacteria Copenhagen: Andr Fred Høst and Son; 1919
    [Google Scholar]
  3. Schleifer KH, Stackebrandt E. Molecular systematics of prokaryotes. Annu Rev Microbiol 1983; 37:143–187 [CrossRef]
    [Google Scholar]
  4. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [CrossRef]
    [Google Scholar]
  5. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [CrossRef]
    [Google Scholar]
  6. Achtman M, Wagner M. Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol 2008; 6:431–440 [CrossRef]
    [Google Scholar]
  7. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [CrossRef]
    [Google Scholar]
  8. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [CrossRef]
    [Google Scholar]
  9. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [CrossRef]
    [Google Scholar]
  10. Wittouck S, Wuyts S, Meehan CJ, van Noort V, Lebeer S. A genome-based species taxonomy of the Lactobacillus Genus Complex. mSystems 2019; 4:e00264–19 [CrossRef]
    [Google Scholar]
  11. Pot B, Felis GE, De Bruyne K, Tsakalidou E, Papadimitriou K et al. a: biodiversity and taxonomy., John Wiley & Sons, Inc, Hoboken N (2014) The genus Lactobacillus . In Holzapfel W, Wood B. (editors) Lact. Acid Bact. Biodivers. Taxon Hoboken, NJ.: John Wiley & Sons, Inc; 2014 pp 249–353
    [Google Scholar]
  12. Hammes WP, Hertel C. The genera Lactobacillus and Carnobacterium . The Prokaryotes New York, NY: Springer US; 2006 pp 320–403
    [Google Scholar]
  13. Salvetti E, Torriani S, Felis GE. The genus Lactobacillus: a taxonomic update. Probiotics Antimicrob Proteins 2012; 4:217–226 [CrossRef]
    [Google Scholar]
  14. Zheng J, Ruan L, Sun M, Gänzle M. A genomic view of lactobacilli and pediococci demonstrates that phylogeny matches ecology and physiology. Appl Environ Microbiol 2015; 81:7233–7243 [CrossRef]
    [Google Scholar]
  15. Salvetti E, Harris HMB, Felis GE, O’Toole PW. Comparative genomics of the genus Lactobacillus reveals robust phylogroups that provide the basis for reclassification. Appl Environ Microbiol 2018; 84:e00993–18
    [Google Scholar]
  16. Sun Z, Harris HMB, McCann A, Guo C, Argimón S et al. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nat Commun 2015; 6:8322 [CrossRef]
    [Google Scholar]
  17. Duar RM, Lin XB, Zheng J, Martino ME, Grenier T et al. Lifestyles in transition: evolution and natural history of the genus Lactobacillus . FEMS Microbiol Rev 2017; 41:S27–S48 [CrossRef]
    [Google Scholar]
  18. Gänzle MG. Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr Opin Food Sci 2015; 2:106–117 [CrossRef]
    [Google Scholar]
  19. Vandamme P, Pot B, Gillis M, de Vos P, Kersters K et al. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 1996; 60:407–438 [CrossRef]
    [Google Scholar]
  20. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [CrossRef]
    [Google Scholar]
  21. Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [CrossRef]
    [Google Scholar]
  22. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10:421 [CrossRef]
    [Google Scholar]
  23. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [CrossRef]
    [Google Scholar]
  24. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [CrossRef]
    [Google Scholar]
  25. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [CrossRef]
    [Google Scholar]
  26. Letunic I, Bork P. Interactive tree of life (iTOL) V4: recent updates and new developments. Nucleic Acids Res 2019; 47:W256–W259 [CrossRef]
    [Google Scholar]
  27. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [CrossRef]
    [Google Scholar]
  28. Wittouck S. GitHub - SWittouck/progenomics: A toolkit for prokaryotic comparative genomics. https://github.com/SWittouck/progenomics. Accessed 10 Sep 2019.
  29. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [CrossRef]
    [Google Scholar]
  30. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [CrossRef]
    [Google Scholar]
  31. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 2018; 35:518–522 [CrossRef]
    [Google Scholar]
  32. Yu G, Smith DK, Zhu H, Guan Y, Lam TT-Y. GGTREE: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol 2017; 8:28–36 [CrossRef]
    [Google Scholar]
  33. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using diamond. Nat Methods 2015; 12:59–60 [CrossRef]
    [Google Scholar]
  34. Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature 2000; 405:299–304 [CrossRef]
    [Google Scholar]
  35. Kloesges T, Popa O, Martin W, Dagan T. Networks of gene sharing among 329 proteobacterial genomes reveal differences in lateral gene transfer frequency at different phylogenetic depths. Mol Biol Evol 2011; 28:1057–1074 [CrossRef]
    [Google Scholar]
  36. Novichkov PS, Omelchenko MV, Gelfand MS, Mironov AA, Wolf YI et al. Genome-wide molecular clock and horizontal gene transfer in bacterial evolution. J Bacteriol 2004; 186:6575–6585 [CrossRef]
    [Google Scholar]
  37. Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 2015; 16:157 [CrossRef]
    [Google Scholar]
  38. Mirdita M, Steinegger M, Söding J. MMseqs2 desktop and local web server APP for fast, interactive sequence searches. Bioinformatics 2019; 35:2856–2858 [CrossRef]
    [Google Scholar]
  39. GitHub - SWittouck/tidygenomes: Functions to import and process orthogroup data in a tidy way. https://github.com/SWittouck/tidygenomes. Accessed 10 Sep 2019.
  40. Wittouck S. Genus-level taxonomy of Lactobacilli. https://github.com/SWittouck/lacto_genera.; 2019
  41. Yu Y, Li X, Zhang J, Chai L-J, Lu Z-M et al. Lactobacillus jinshani sp. nov., isolated from solid-state vinegar culture of Zhenjiang aromatic vinegar. Antonie van Leeuwenhoek 2020; 113:43–54 [CrossRef][PubMed]
    [Google Scholar]
  42. Praet J, Meeus I, Cnockaert M, Houf K, Smagghe G et al. Novel lactic acid bacteria isolated from the bumble bee gut: Convivina intestini gen. nov., sp. nov., Lactobacillus bombicola sp. nov., and Weissella bombi sp. nov. Antonie Van Leeuwenhoek 2015; 107:1337–1349 [CrossRef]
    [Google Scholar]
  43. Wittouck S, Wuyts S, Lebeer S. Towards a genome-based reclassification of the genus Lactobacillus . Appl Environ Microbiol 2019; 85:e02155–18 [CrossRef]
    [Google Scholar]
  44. Euzéby J. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2010; 60:469–472
    [Google Scholar]
  45. Zhang S, Oh J-H, Alexander LM, Özçam M, van Pijkeren J-P. D-Alanyl-D-Alanine ligase as a broad-host-range counterselection marker in vancomycin-resistant lactic acid bacteria. J Bacteriol 2018; 200:e00607–00617 [CrossRef]
    [Google Scholar]
  46. Vent DH, Indian S, Zhao S et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. Nat Commun 2014; 6:1–8
    [Google Scholar]
  47. Wuyts S, Wittouck S, De Boeck I, Allonsius CN, Pasolli E et al. Large-scale phylogenomics of the Lactobacillus casei group highlights taxonomic inconsistencies and reveals novel clade-associated features. mSystems 2017; 2:e00061–17 [CrossRef][PubMed]
    [Google Scholar]
  48. Harris HMB, Bourin MJB, Claesson MJ, O'Toole PW. Phylogenomics and comparative genomics of Lactobacillus salivarius, a mammalian gut commensal. Microb genomics 2017; 3:e000115 [CrossRef]
    [Google Scholar]
  49. Rosselló-Móra R, Amann R. Past and future species definitions for bacteria and archaea. Syst Appl Microbiol 2015; 38:209–216 [CrossRef]
    [Google Scholar]
  50. Wieme A, Cleenwerck I, Van Landschoot A, Vandamme P. Pediococcus lolii DSM 19927T and JCM 15055T are strains of Pediococcus acidilactici . Int J Syst Evol Microbiol 2012; 62:3105–3108 [CrossRef]
    [Google Scholar]
  51. Fujisawa T, Shirasaka S, Watabe J, Mitsuoka T. Lactobacillus aviarius sp. nov.: a new species isolated from the intestine of chickens. Syst Appl Microbiol 1984; 5:414–420 [CrossRef]
    [Google Scholar]
  52. Martinson VG, Danforth BN, Minckley RL, Rueppell O, Tingek S et al. A simple and distinctive microbiota associated with honey bees and bumble bees. Mol Ecol 2011; 20:619–628 [CrossRef]
    [Google Scholar]
  53. van der Veer C, Hertzberger RY, Bruisten SM, Tytgat HLP, Swanenburg J et al. Comparative genomics of human Lactobacillus crispatus isolates reveals genes for glycosylation and glycogen degradation: implications for in vivo dominance of the vaginal microbiota. Microbiome 2019; 7:49 [CrossRef]
    [Google Scholar]
  54. Wang W, Hu H, Zijlstra RT, Zheng J, Gänzle MG. Metagenomic reconstructions of gut microbial metabolism in weanling pigs. Microbiome 2019; 7:48 [CrossRef]
    [Google Scholar]
  55. Lin XB, Wang T, Stothard P, Corander J, Wang J et al. The evolution of ecological facilitation within mixed-species biofilms in the mouse gastrointestinal tract. ISME J 2018; 12:2770–2784 [CrossRef]
    [Google Scholar]
  56. Tannock GW, Wilson CM, Loach D, Cook GM, Eason J et al. Resource partitioning in relation to cohabitation of Lactobacillus species in the mouse forestomach. ISME J 2012; 6:927–938 [CrossRef]
    [Google Scholar]
  57. van de Guchte M, Penaud S, Grimaldi C, Barbe V, Bryson K et al. The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc Natl Acad Sci U S A 2006; 103:9274–9279 [CrossRef]
    [Google Scholar]
  58. Gänzle MG. Fermented Foods. In Doyle MP, Diez­ Gonzalez F, Hill C. (editors) Food Microbiol. Fundam. Front, 5th ed. ASM Press; 2019 pp 855–900
    [Google Scholar]
  59. Hutkins RW. Microbiology and technology of fermented foods, 2nd. Chigaco, IL: IFT Press; 2019
    [Google Scholar]
  60. Weiss N, Schillinger U, Kandler O. Lactobacillus lactis, Lactobacillus leichmannii and Lactobacillus bulgaricus, subjective synonyms of Lactobacillus delbrueckii, and description of Lactobacillus delbrueckii subsp. lactis comb. nov. and Lactobacillus delbrueckii subsp. bulgaricus comb. nov. Syst Appl Microbiol 1983; 4:552–557 [CrossRef]
    [Google Scholar]
  61. Rogosa M, Wiseman RF, Mitchell JA, Disraely MN, Beaman AJ. Species differentiation of oral lactobacilli from man including descriptions of Lactobacillus salivarius nov spec and Lactobacillus cellobiosus nov spec. J Bacteriol 1953; 65:681–699 [CrossRef]
    [Google Scholar]
  62. Leichmann G. Uber die Im Brennereiprozess bei Der Kunsthefe auftretende spontane Milchsäuregärung. Zentralbl Bakteriol Parasitenk Abt I 1896; 1:281–285
    [Google Scholar]
  63. Rogosa M, Sharpe E. An approach to the classification of the lactobacilli. J Appl Bacteriol 1959; 22:29–340
    [Google Scholar]
  64. Rogosa M, Hansen PA. Nomenclatural considerations of certain species of Lactobacillus Beijerinck: Request for an opinion. Int J Syst Bacteriol 1971; 21:177–186 [CrossRef]
    [Google Scholar]
  65. Henneberg W. Zur Kentniss Der Milchsäurebakterien Der Brennereimaische, Der Milch, des Bieres, Der Preßhefe, Der Melasse, des Sauerkohls, Der sauren Gurken und des Sauerteigs, sowie einige über die Milchsäurebakterien des menschlichen Magens. Spiritusindustrie 1903; 26:329–332
    [Google Scholar]
  66. Dellaglio F, Felis GE, Castioni A, Torriani S, Germond JE. Lactobacillus delbrueckii subsp. indicus subsp. nov., isolated from Indian dairy products. Int J Syst Evol Microbiol 2005; 55:401–404 [CrossRef]
    [Google Scholar]
  67. Adimpong DB, Nielsen DS, Sørensen KI, Vogensen FK, Sawadogo-Lingani H et al. Lactobacillus delbrueckii subsp. jakobsenii subsp. nov., isolated from dolo wort, an alcoholic fermented beverage in Burkina Faso. Int J Syst Evol Microbiol 2013; 63:3720–3726 [CrossRef]
    [Google Scholar]
  68. Kudo Y, Oki K, Watanabe K. Lactobacillus delbrueckii subsp. sunkii subsp. nov., isolated from sunki, a traditional Japanese pickle. Int J Syst Evol Microbiol 2012; 62:2643–2649 [CrossRef]
    [Google Scholar]
  69. Entani E, Masai H, Suzuki K-I. Lactobacillus acetotolerans, a new species from fermented vinegar broth. Int J Syst Bacteriol 1986; 36:544–549 [CrossRef]
    [Google Scholar]
  70. Moro E. Über den Bacillus acidophilus n. sp. Jahrb fur Kinderheilkd und Phys Erziehung 1900; 52:38–55
    [Google Scholar]
  71. Hansen PA, Mocquot G. Lactobacillus acidophilus (Moro) comb. nov. Int J Syst Bacteriol 1970; 20:325–327 [CrossRef]
    [Google Scholar]
  72. Johnson JL, Phelps CF, Cummins CS, London J, Gasser F. Taxonomy of the Lactobacillus acidophilus group. Int J Syst Bacteriol 1980; 30:53–68 [CrossRef]
    [Google Scholar]
  73. Bohak I, Back W, Richter L, Ehrmann M, Ludwig W et al. Lactobacillus amylolyticus sp. nov., isolated from beer malt and beer wort. Syst Appl Microbiol 1998; 21:360–364 [CrossRef]
    [Google Scholar]
  74. Jakava-Viljanen M, Murros A, Palva A, Björkroth KJ. Lactobacillus sobrius Konstantinov et al. 2006 is a later synonym of Lactobacillus amylovorus Nakamura 1981. Int J Syst Evol Microbiol 2008; 58:910–913 [CrossRef][PubMed]
    [Google Scholar]
  75. Nakamura LK. Lactobacillus amylovorus, a new starch-hydrolyzing species from cattle waste-corn fermentations. Int J Syst Bacteriol 1981; 31:56–63 [CrossRef]
    [Google Scholar]
  76. Leser TD, Amenuvor JZ, Jensen TK, Lindecrona RH, Boye M et al. Culture-Independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl Environ Microbiol 2002; 68:673–690 [CrossRef]
    [Google Scholar]
  77. Killer J, Dubná S, Sedláček I. Lactobacillus apis sp. nov., from the stomach of honeybees (Apis mellifera), having an in vitro inhibitory effect on the causative agents of American and European foulbrood. Int J Syst Evol Microbiol 2014; 64:152–157 [CrossRef]
    [Google Scholar]
  78. Zhang MZ, Yang M, Su H, Rollins D, Zhang S. Lactobacillus colini sp. nov., isolated from Northern Bobwhite (Colinus virginianus). Int J Syst Evol Microbiol 2017; 67:325–329 [CrossRef]
    [Google Scholar]
  79. Brygoo E, Aladame N. Etude d’une espèce nouvelle anaerobic stricte du genre Eubacterium: E. crispatum n. sp. Ann Inst Pasteur Paris 1953; 84:640–651
    [Google Scholar]
  80. Moore W, Holdeman L. Propionibacterium, Arachnia, Actinomyces, Lactobacillus and Bifidobacterium.. Outline of Clinical Methods in Anaerobic Bacteriology, 2nd ed. Blacksburg, VA: Virginia Polytechnic Institute, Anaerobe Laboratory; 1970
    [Google Scholar]
  81. Cato EP, Moore WEC, Johnson JL. Synonymy of Strains of "Lactobacillus acidophilus" Group A2 (Johnson et al. 1980) with the Type Strain of Lactobacillus crispatus (Brygoo and Aladame 1953) Moore and Holdeman 1970. Int J Syst Bacteriol 1983; 33:426–428 [CrossRef]
    [Google Scholar]
  82. Morita H, Shimazu M, Shiono H, Toh H, Nakajima F et al. Lactobacillus equicursoris sp. nov., isolated from the faeces of a thoroughbred racehorse. Int J Syst Evol Microbiol 2010; 60:109–112 [CrossRef]
    [Google Scholar]
  83. Dicks L, Silvester M, Lawson PA, Collins MD. Lactobacillus fornicalis sp. nov., isolated from the posterior fornix of the human vagina. Int J Syst Evol Microbiol 2000; 50:1253–1258 [CrossRef]
    [Google Scholar]
  84. Fujisawa T, Benno Y, Yaeshima T, Mitsuoka T. Taxonomic study of the Lactobacillus acidophilus group, with recognition of Lactobacillus gallinarum sp. nov. and Lactobacillus johnsonii sp. nov. and synonymy of Lactobacillus acidophilus group A3 (Johnson et al. 1980) with the type strain of Lactobacillus amylovorus (Nakamura 1981). Int J Syst Bacteriol 1992; 42:487–491 [CrossRef]
    [Google Scholar]
  85. Lauer E, Kandler O. Lactobacillus gasseri sp. nov., a new species of the subgenus Thermobacterium . Zentralblatt für Bakteriologie: I. Abt. Originale C: Allgemeine, angewandte und ökologische Mikrobiologie 1980; 1:75–78 [CrossRef]
    [Google Scholar]
  86. Lauer E, Kandler O. Validation of the publication of new names and new combinations previously effectively published outside the IJSB list no. 4. Int J Syst Bacteriol 1980; 30:601
    [Google Scholar]
  87. Cousin S, Gulat-Okalla M-L, Motreff L, Gouyette C, Bouchier C et al. Lactobacillus gigeriorum sp. nov., isolated from chicken crop. Int J Syst Evol Microbiol 2012; 62:330–334 [CrossRef]
    [Google Scholar]
  88. Mitsuoka T, Fujisawa T. Lactobacillus hamsteri, a new species from the intestine of hamsters. Proceedings of the Japan Academy. Ser. B: Physical and Biological Sciences 1987; 63:269–272 [CrossRef]
    [Google Scholar]
  89. Olofsson TC, Alsterfjord M, Nilson B, Butler E, Vasquez A. Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov., isolated from the honey stomach of the honeybee Apis mellifera . Int J Syst Evol Microbiol 2014; 64:3109–3119 [CrossRef]
    [Google Scholar]
  90. Bergey D, Harrison F, Breed R, Hammer B, Huntoon F. Bergey’s Manual of Determinative Bacteriology. In Bergey D, Harrison F, Breed R, Hammer B, Huntoon F. (editors) Bergey’s Man. Determ. Bacteriol 462, 2nd ed.. Baltimore: The Williams & Wilkins Co; 1925
    [Google Scholar]
  91. Naser SM, Hagen KE, Vancanneyt M, Cleenwerck I, Swings J. Lactobacillus suntoryeus Cachat and Priest 2005 is a later synonym of Lactobacillus helveticus (Orla-Jensen 1919) Bergey et al. 1925 (Approved Lists 1980). Int J Syst Evol Microbiol 2006; 56:355–360 [CrossRef]
    [Google Scholar]
  92. Hammons S, Oh PL, Martínez I, Clark K, Schlegel VL et al. A small variation in diet influences the Lactobacillus strain composition in the crop of broiler chickens. Syst Appl Microbiol 2010; 33:275–281 [CrossRef]
    [Google Scholar]
  93. Cousin S, Motreff L, Gulat-Okalla M-L, Gouyette C, Sproer C et al. Lactobacillus pasteurii sp. nov. and Lactobacillus hominis sp. nov. Int J Syst Evol Microbiol 2013; 63:53–59 [CrossRef]
    [Google Scholar]
  94. Falsen E, Pascual C, Sjoden B, Ohlen M, Collins MD. Phenotypic and phylogenetic characterization of a novel Lactobacillus species from human sources: description of Lactobacillus iners sp. nov. Int J Syst Bacteriol 1999; 49:217–221 [CrossRef]
    [Google Scholar]
  95. Zeeuwen PLJM, Boekhorst J, van den Bogaard EH, de Koning HD, van de Kerkhof PMC et al. Microbiome dynamics of human epidermis following skin barrier disruption. Genome Biol 2012; 13:R101 [CrossRef]
    [Google Scholar]
  96. Fujisawa T, Itoh K, Benno Y, Mitsuoka T. Lactobacillus intestinalis (ex Hemme 1974) sp. nov., nom. rev., isolated from the intestines of mice and rats. Int J Syst Bacteriol 1990; 40:302–304 [CrossRef]
    [Google Scholar]
  97. Gasser F, Mandel M, Rogosa M. Lactobacillus jensenii sp.nov., a new representative of the subgenus Thermobacterium . J Gen Microbiol 1970; 62:219–222 [CrossRef]
    [Google Scholar]
  98. Roos S, Engstrand L, Jonsson H. Lactobacillus gastricus sp. nov., Lactobacillus antri sp. nov., Lactobacillus kalixensis sp. nov. and Lactobacillus ultunensis sp. nov., isolated from human stomach mucosa. Int J Syst Evol Microbiol 2005; 55:77–82 [CrossRef]
    [Google Scholar]
  99. Fujisawa T, Adachi S, Toba T, Arihara K, Mitsuoka T. Lactobacillus kefiranofaciens sp. nov. isolated from kefir grains. Int J Syst Bacteriol 1988; 38:12–14 [CrossRef]
    [Google Scholar]
  100. Vancanneyt M, Mengaud J, Cleenwerck I, Vanhonacker K, Hoste B. Reclassification of Lactobacillus kefirgranum Takizawa et al. 1994 as Lactobacillus kefiranofaciens subsp. kefirgranum subsp. nov. and emended description of L. kefiranofaciens Fujisawa et al. 1988. Int J Syst Evol Microbiol 2004; 54:551–556 [CrossRef]
    [Google Scholar]
  101. Takizawa S, Kojima S, Tamura S, Fujinaga S, Benno Y et al. Lactobacillus kefirgranum sp. nov. and Lactobacillus parakefir sp. nov., two new species from kefir grains. Int J Syst Bacteriol 1994; 44:435–439 [CrossRef]
    [Google Scholar]
  102. Mukai T, Arihara K, Ikeda A, Nomura K, Suzuki F. Lactobacillus kitasatonis sp. nov., from chicken intestine. Int J Syst Evol Microbiol 2003; 53:2055–2059 [CrossRef]
    [Google Scholar]
  103. Rocha J, Botelho J, Ksiezarek M, Perovic SU, Machado M et al. Lactobacillus mulieris sp. nov., a new species of Lactobacillus delbrueckii group. Int J Syst Evol Microbiol 2020; 3: [CrossRef]
    [Google Scholar]
  104. Wang C, Huang Y, Li L, Guo J, Wu Z et al. Lactobacillus panisapium sp. nov., from honeybee Apis cerana bee bread. Int J Syst Evol Microbiol 2018; 68:703–708 [CrossRef]
    [Google Scholar]
  105. Tanizawa Y, Tada I, Kobayashi H, Endo A, Maeno S et al. Lactobacillus paragasseri sp. nov., a sister taxon of Lactobacillus gasseri, based on whole-genome sequence analyses. Int J Syst Evol Microbiol 2018; 68:3512–3517 [CrossRef]
    [Google Scholar]
  106. Kim J-S, Choe H, Kim KM, Lee Y-R, Rhee M-S et al. Lactobacillus porci sp. nov., isolated from small intestine of a swine. Int J Syst Evol Microbiol 2018; 68:3118–3124 [CrossRef]
    [Google Scholar]
  107. Lawson PA, Wacher C, Hansson I, Falsen E, Collins MD. Lactobacillus psittaci sp. nov., isolated from a hyacinth macaw (Anodorhynchus hyacinthinus). Int J Syst Evol Microbiol 2001; 51:967–970 [CrossRef]
    [Google Scholar]
  108. Killer J, Havlik J, Vlkova E, Rada V, Pechar R et al. Lactobacillus rodentium sp. nov., from the digestive tract of wild rodents. Int J Syst Evol Microbiol 2014; 64:1526–1533 [CrossRef]
    [Google Scholar]
  109. Wang L-T, Kuo H-P, Wu Y-C, Tai C-J, Lee F-L. Lactobacillus taiwanensis sp. nov., isolated from silage. Int J Syst Evol Microbiol 2009; 59:2064–2068 [CrossRef]
    [Google Scholar]
  110. Meng J, Jin D, Yang J, Lai X-H, Pu J et al. Lactobacillus xujianguonis sp. nov., isolated from faeces of Marmota himalayana . Int J Syst Evol Microbiol 2020; 70:11–15 [CrossRef]
    [Google Scholar]
  111. Nakamura LK, Crowell CD. Lactobacillus amylophilus, a new starch-hydrolyzing species from swine waste-corn fermentation. Dev Ind Microbiol 1979; 20:531–540
    [Google Scholar]
  112. Naser SM, Vancanneyt M, Snauwaert C, Vrancken G, Hoste B et al. Reclassification of Lactobacillus amylophilus LMG 11400 and NRRL B-4435 as Lactobacillus amylotrophicus sp. nov. Int J Syst Evol Microbiol 2006; 56:2523–2527 [CrossRef]
    [Google Scholar]
  113. Killer J, Votavova A, Valterova I, Vlkova E, Rada V et al. Lactobacillus bombi sp. nov., from the digestive tract of laboratory-reared bumblebee queens (Bombus terrestris). Int J Syst Evol Microbiol 2014; 64:2611–2617 [CrossRef]
    [Google Scholar]
  114. Gänzle MG, Zheng J. Lifestyles of sourdough lactobacilli – do they matter for microbial ecology and bread quality?. Int J Food Microbiol 2019; 302:15–23 [CrossRef]
    [Google Scholar]
  115. Reuter G. Lactobacillus alimentarius sp. nov., nom rev. and Lactobacillus farciminis sp. nov., nom. rev. Syst Appl Microbiol 1983; 4:277–279 [CrossRef]
    [Google Scholar]
  116. Lemay M-J, Choquette J, Delaquis PJ, Gariépy C, Rodrigue N et al. Antimicrobial effect of natural preservatives in a cooked and acidified chicken meat model. Int J Food Microbiol 2002; 78:217–226 [CrossRef]
    [Google Scholar]
  117. Jung MY, Lee SH, Lee M, Song JH, Chang JY. Lactobacillus allii sp. nov. isolated from scallion kimchi. Int J Syst Evol Microbiol 2017; 67:4936–4942 [CrossRef]
    [Google Scholar]
  118. Wei YX, Gu CT. Lactobacillus yilanensis sp. nov., Lactobacillus bayanensis sp. nov., Lactobacillus keshanensis sp. nov., Lactobacillus kedongensis sp. nov., Lactobacillus baiquanensis sp. nov., Lactobacillus jidongensis sp. nov., Lactobacillus hulinensis sp. nov., Lactobacillus mishanensis sp. nov. and Lactobacillus zhongbaensis sp. nov., isolated from Chinese traditional pickle and yogurt. Int J Syst Evol Microbiol 2019; 69:3178–3190 [CrossRef][PubMed]
    [Google Scholar]
  119. Yang S-J, Kim B-Y, Chun J. Rejection of reclassification of Lactobacillus kimchii and Lactobacillus bobalius as later subjective synonyms of Lactobacillus paralimentarius using comparative genomics. Int J Syst Evol Microbiol 2017; 67:4515–4517 [CrossRef]
    [Google Scholar]
  120. Manes-Lazaro R, Ferrer S, Rodas AM, Urdiain M, Pardo I. Lactobacillus bobalius sp. nov., a lactic acid bacterium isolated from Spanish Bobal grape must. Int J Syst Evol Microbiol 2008; 58:2699–2703 [CrossRef]
    [Google Scholar]
  121. Scheirlinck I, Van der Meulen R, Van Schoor A, Huys G, Vandamme P et al. Lactobacillus crustorum sp. nov., isolated from two traditional Belgian wheat sourdoughs. Int J Syst Evol Microbiol 2007; 57:1461–1467 [CrossRef]
    [Google Scholar]
  122. Qian B, Yin L, Yao X, Zhong Y, Gui J et al. Effects of fermentation on the hemolytic activity and degradation of Camellia oleifera saponins by Lactobacillus crustorum and Bacillus subtilis . FEMS Microbiol Lett 2018; 365:fny014 [CrossRef]
    [Google Scholar]
  123. Chang C-huan, Chen Y-sheng, Lee T-tai, Chang Y-chung, Yu B. Lactobacillus formosensis sp. nov., a lactic acid bacterium isolated from fermented soybean meal. Int J Syst Evol Microbiol 2015; 65:101–106 [CrossRef][PubMed]
    [Google Scholar]
  124. Irisawa T, Tanaka N, Kitahara M, Sakamoto M, Ohkuma M et al. Lactobacillus furfuricola sp. nov., isolated from Nukadoko, rice bran paste for Japanese pickles. Int J Syst Evol Microbiol 2014; 64:2902–2906 [CrossRef]
    [Google Scholar]
  125. Du X, Cao K, Tan M, Pan Q. Lactobacillus futsaii subsp. chongqingii subsp. nov., isolated from a traditional Chinese pickle. Curr Microbiol 2019; 76:153–158 [CrossRef]
    [Google Scholar]
  126. Chao S-H, Kudo Y, Tsai Y-C, Watanabe K. Lactobacillus futsaii sp. nov., isolated from fu-tsai and suan-tsai, traditional Taiwanese fermented mustard products. Int J Syst Evol Microbiol 2012; 62:489–494 [CrossRef]
    [Google Scholar]
  127. Ximenes JCM, Hissa DC, Ribeiro LH, Rocha MVP, Oliveira EG et al. Sustainable recovery of protein-rich liquor from shrimp farming waste by lactic acid fermentation for application in tilapia feed. Braz J Microbiol 2019; 50:195–203 [CrossRef]
    [Google Scholar]
  128. Jung H-M, Liu Q-M, Kim J-K, Lee S-T, Kim S-C et al. Lactobacillus ginsenosidimutans sp. nov., isolated from kimchi with the ability to transform ginsenosides. Antonie Van Leeuwenhoek 2013; 103:867–876 [CrossRef][PubMed]
    [Google Scholar]
  129. Schuster JA, Klingl A, Vogel RF, Ehrmann MA. Polyphasic characterization of two novel Lactobacillus spp. isolated from blown salami packages: Description of Lactobacillus halodurans sp. nov. and Lactobacillus salsicarnum sp. nov. Syst Appl Microbiol 2019; 42:126023 [CrossRef][PubMed]
    [Google Scholar]
  130. Gu CT, Li CY, Yang LJ, Huo GC. Lactobacillus heilongjiangensis sp. nov., isolated from Chinese pickle. Int J Syst Evol Microbiol 2013; 63:4094–4099 [CrossRef][PubMed]
    [Google Scholar]
  131. Fu ML, Gu CT. Lactobacillus huachuanensis sp. nov., isolated from Chinese traditional pickle. Int J Syst Evol Microbiol 2019; 69:2807–2814 [CrossRef][PubMed]
    [Google Scholar]
  132. Kröckel L, Ehrmann MA, Radmann P, Lick S, Vogel RF et al. Lactobacillus insicii sp. nov., isolated from fermented raw meat. Int J Syst Evol Microbiol 2016; 66:236–242
    [Google Scholar]
  133. Kim J, Kim JY, Kim M-S, Roh SW, Bae J-W. Lactobacillus kimchiensis sp. nov., isolated from a fermented food. Int J Syst Evol Microbiol 2013; 63:1355–1359 [CrossRef]
    [Google Scholar]
  134. Park CS, Kho YH, Kang KH, Yoon JH, Kang SS et al. Lactobacillus kimchii sp. nov., a new species from kimchi. Int J Syst Evol Microbiol 2000; 50:1789–1795
    [Google Scholar]
  135. Zhao W, Gu CT. Lactobacillus terrae is a later heterotypic synonym of Lactobacillus metriopterae . Int J Syst Evol Microbiol 2019; 69:1597–1600 [CrossRef][PubMed]
    [Google Scholar]
  136. Chiba M, Itabashi T, Hirai K, Sakamoto M, Ohkuma M et al. Lactobacillus metriopterae sp. nov., a novel lactic acid bacterium isolated from the gut of grasshopper Metrioptera engelhardti . Int J Syst Evol Microbiol 2018; 68:1484–1489 [CrossRef]
    [Google Scholar]
  137. Ehrmann MA, Müller MRA, Vogel RF. Molecular analysis of sourdough reveals Lactobacillus mindensis sp. nov. Int J Syst Evol Microbiol 2003; 53:7–13 [CrossRef]
    [Google Scholar]
  138. Chen Y-S, Wang L-T, Liao Y-J, Lan Y-S, Chang C-H et al. Lactobacillus musae sp. nov., a novel lactic acid bacterium isolated from banana fruits. Int J Syst Evol Microbiol 2017; 67:5144–5149 [CrossRef][PubMed]
    [Google Scholar]
  139. Valcheva R, Ferchichi MF, Korakli M, Ivanova I, Gänzle MG. Lactobacillus nantensis sp. nov., isolated from French wheat sourdough. Int J Syst Evol Microbiol 2006; 56:587–591 [CrossRef]
    [Google Scholar]
  140. Kashiwagi T, Suzuki T, Kamakura T. Lactobacillus nodensis sp. nov., isolated from rice bran. Int J Syst Evol Microbiol 2009; 59:83–86 [CrossRef]
    [Google Scholar]
  141. O'Brien E, Mills S, Dobson A, Serrano LM, Hannon J et al. Contribution of the novel sulfur-producing adjunct Lactobacillus nodensis to flavor development in Gouda cheese. J Dairy Sci 2017; 100:4322–4334 [CrossRef]
    [Google Scholar]
  142. Heo J, Saitou S, Tamura T, Cho H, Kim J-S et al. Lactobacilus nuruki sp. nov., isolated from Nuruk, a Korean fermentation starter. Int J Syst Evol Microbiol 2018; 68:3273–3278 [CrossRef]
    [Google Scholar]
  143. Cai Y, Okada H, Mori H, Benno Y, Nakase T. Lactobacillus paralimentarius sp. nov., isolated from sourdough. Int J Syst Bacteriol 1999; 49:1451–1455 [CrossRef]
    [Google Scholar]
  144. Lin S-T, Wang L-T, Wang H-M, Tamura T, Mori K et al. Lactobacillus suantsaicola sp. nov. and Lactobacillus suantsaiihabitans sp. nov., isolated from suan-tsai, a traditional fermented mustard green product of Taiwan. Int J Syst Evol Microbiol 2019; 9: [CrossRef]
    [Google Scholar]
  145. Chenoll E, Carmen Macián M, Aznar R. Lactobacillus tucceti sp. nov., a new lactic acid bacterium isolated from sausage. Syst Appl Microbiol 2006; 29:389–395 [CrossRef]
    [Google Scholar]
  146. Krockel L, Schillinger U, Franz C, Bantleon A, Ludwig W. Lactobacillus versmoldensis sp. nov., isolated from raw fermented sausage. Int J Syst Evol Microbiol 2003; 53:513–517 [CrossRef]
    [Google Scholar]
  147. Zhang Z, Hou Q, Wang Y, Li W, Zhao H et al. Lactobacillus zhachilii sp. nov., a lactic acid bacterium isolated from Zha-Chili. Int J Syst Evol Microbiol 2019; 69:2196–2201 [CrossRef]
    [Google Scholar]
  148. Tong H, Dong X. Lactobacillus concavus sp. nov., isolated from the walls of a distilled spirit fermenting cellar in China. Int J Syst Evol Microbiol 2005; 55:2199–2202 [CrossRef]
    [Google Scholar]
  149. Haakensen M, Dobson CM, Hill JE, Ziola B. Reclassification of Pediococcus dextrinicus (Coster and White 1964) Back 1978 (Approved Lists 1980) as Lactobacillus dextrinicus comb. nov., and emended description of the genus Lactobacillus . Int J Syst Evol Microbiol 2009; 59:615–621 [CrossRef]
    [Google Scholar]
  150. Endo A, Okada S. Lactobacillus composti sp. nov., a lactic acid bacterium isolated from a compost of distilled shochu residue. Int J Syst Evol Microbiol 2007; 57:870–872 [CrossRef]
    [Google Scholar]
  151. Torres-Maravilla E, Lenoir M, Mayorga-Reyes L, Allain T, Sokol H et al. Identification of novel anti-inflammatory probiotic strains isolated from pulque. Appl Microbiol Biotechnol 2016; 100:385–396 [CrossRef]
    [Google Scholar]
  152. Back W, Bohak I, Ehrmann M, Ludwig W, Pot B et al. Lactobacillus perolens sp. nov., a soft drink spoilage bacterium. Syst Appl Microbiol 1999; 22:354–359 [CrossRef]
    [Google Scholar]
  153. Miyamoto M, Seto Y, Hao DH, Teshima T, Sun YB, Hai Hao D, Bo Sun Y et al. Lactobacillus harbinensis sp. nov., consisted of strains isolated from traditional fermented vegetables 'Suan cai' in Harbin, Northeastern China and Lactobacillus perolens DSM 12745. Syst Appl Microbiol 2005; 28:688–694 [CrossRef][PubMed]
    [Google Scholar]
  154. Zou Y, Liu F, Fang C, Wan D, Yang R et al. Lactobacillus shenzhenensis sp. nov., isolated from a fermented dairy beverage. Int J Syst Evol Microbiol 2013; 63:1817–1823 [CrossRef]
    [Google Scholar]
  155. Tindall B. The type strain of Lactobacillus casei is ATCC 393, ATCC 334 cannot serve as the type because it represents a different taxon, the name Lactobacillus paracasei and its subspecies names are not rejected and the revival of the name “Lactobacillus zeae” contravenes Rules 51b (1) and (2) of the International Code of Nomenclature of Bacteria. Opinion 82. Int J Syst Evol Microbiol 2008; 58:1764–1765
    [Google Scholar]
  156. Orla-Jensen S. Maelkeri-Bakteriologi; 1916
  157. Hansen PA, Lessel EF. Lactobacillus casei (Orla-Jensen) comb. nov. Int J Syst Bacteriol 1971; 21:69–71 [CrossRef]
    [Google Scholar]
  158. Long GY, Gu CT. Lactobacillus jixianensis sp. nov., Lactobacillus baoqingensis sp. nov., Lactobacillus jiayinensis sp. nov., Lactobacillus zhaoyuanensis sp. nov., Lactobacillus lindianensis sp. nov., Lactobacillus huananensis sp. nov., Lactobacillus tangyuanensis sp. nov., Lactobacillus fuyuanensis sp. nov., Lactobacillus tongjiangensis sp. nov., Lactobacillus fujinensis sp. nov. and Lactobacillus mulengensis sp. nov., isolated from Chinese traditional pickle. Int J Syst Evol Microbiol 2019; 69:2340–2353 [CrossRef][PubMed]
    [Google Scholar]
  159. Volokhov DV, Amselle M, Beck BJ, Popham DL, Whittaker P et al. Lactobacillus brantae sp. nov., isolated from faeces of Canada geese (Branta canadensis). Int J Syst Evol Microbiol 2012; 62:2068–2076 [CrossRef]
    [Google Scholar]
  160. Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2015; 65:3763–3767 [CrossRef]
    [Google Scholar]
  161. Tanasupawat S, Pakdeeto A, Thawai C, Yukphan P, Okada S. Identification of lactic acid bacteria from fermented tea leaves (miang) in Thailand and proposals of Lactobacillus thailandensis sp. nov., Lactobacillus camelliae sp. nov., and Pediococcus siamensis sp. nov. J Gen Appl Microbiol 2007; 53:7–15 [CrossRef]
    [Google Scholar]
  162. Huang C-H, Liou J-S, Lee A-Y, Tseng M, Miyashita M et al. Polyphasic characterization of a novel species in the Lactobacillus casei group from cow manure of Taiwan: Description of L. chiayiensis sp. nov. Syst Appl Microbiol 2018; 41:270–278 [CrossRef]
    [Google Scholar]
  163. Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2018; 68:3379–3393 [CrossRef]
    [Google Scholar]
  164. Zhao W, Gu CT. Lactobacillus hulanensis sp. nov., isolated from suancai, a traditional Chinese pickle. Int J Syst Evol Microbiol 2019; 69:2147–2152 [CrossRef][PubMed]
    [Google Scholar]
  165. Morlon-Guyot J, Guyot JP, Pot B, de Haut IJ, Raimbault M. Lactobacillus manihotivorans sp. nov., a new starch-hydrolysing lactic acid bacterium Isolated during cassava sour starch fermentation. Int J Syst Bacteriol 1998; 48:1101–1109 [CrossRef]
    [Google Scholar]
  166. Cai Y, Pang H, Kitahara M, Ohkuma M. Lactobacillus nasuensis sp. nov., a lactic acid bacterium isolated from silage, and emended description of the genus Lactobacillus . Int J Syst Evol Microbiol 2012; 62:1140–1144 [CrossRef]
    [Google Scholar]
  167. Liu B, Dong X. Lactobacillus pantheris sp. nov., isolated from faeces of a jaguar. Int J Syst Evol Microbiol 2002; 52:1745–1748
    [Google Scholar]
  168. Collins MD, Phillips BA, Zanoni P. Deoxyribonucleic acid homology studies of Lactobacillus casei, Lactobacillus paracasei sp. nov., subsp. paracasei and subsp. tolerans, and Lactobacillus rhamnosus sp. nov., comb. nov. Int J Syst Bacteriol 1989; 39:105–108 [CrossRef]
    [Google Scholar]
  169. Dal Bello F, Hertel C. Oral cavity as natural reservoir for intestinal lactobacilli. Syst Appl Microbiol 2006; 29:69–76 [CrossRef]
    [Google Scholar]
  170. Abo-Elnaga I, Kandler O. Zur Taxonomie der Gattung Lactobacillus Beijerinck. I. Das Subgenus Streptobacterium Orla-Jensen. Zentralblatt fur Bakteriol Parasitenkd Infekt und Hyg 1965; 2:1–36
    [Google Scholar]
  171. Nguyen DTL, Cnockaert M, Van Hoorde K, De Brandt E, Snauwaert I et al. Lactobacillus porcinae sp. nov., isolated from traditional Vietnamese nem chua. Int J Syst Evol Microbiol 2013; 63:1754–1759 [CrossRef]
    [Google Scholar]
  172. Hansen P. Type strains of Lactobacillus species. A report by the taxonomic subcommittee on lactobacilli and closely related organisms. 76 pp; 1968
  173. Oki K, Kudo Y, Watanabe K. Lactobacillus saniviri sp. nov. and Lactobacillus senioris sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2012; 62:601–607 [CrossRef]
    [Google Scholar]
  174. Weiss N, Schillinger U, Laternser M, Kandler O. Validation List N∘ 8. Int J Syst Bacteriol 1982; 32:266–268
    [Google Scholar]
  175. Weiss N, Schillinger U, Laternser M, Kandler O. Lactobacillus sharpeae sp. nov. and Lactobacillus agilis sp. nov., two new species of homofermentative, meso-diaminopimelic acid-containing lactobacilli. Zentralbl Mikrobiol Parasitenkd Infekt Hyg Abt I Orig 1981; 1:242–253
    [Google Scholar]
  176. Ct G, Cy L, Yang LJ, Huo GC. Lactobacillus mudanjiangensis sp. nov., Lactobacillus songhuajiangensis sp. nov. and Lactobacillus nenjiangensis sp. nov., isolated from Chinese traditional pickle and sourdough. Int J Syst Evol Microbiol 2013; 63:4698–4706
    [Google Scholar]
  177. Leisner JJ, Vancanneyt M, Goris J, Christensen H, Rusul G. Description of Paralactobacillus selangorensis gen. nov., sp. nov., a new lactic acid bacterium isolated from chili bo, a Malaysian food ingredient. Int J Syst Evol Microbiol 2000; 50:19–24 [CrossRef]
    [Google Scholar]
  178. Haakensen M, Pittet V, Ziola B. Reclassification of Paralactobacillus selangorensis Leisner et al. 2000 as Lactobacillus selangorensis comb. nov. Int J Syst Evol Microbiol 2011; 61:2979–2983 [CrossRef][PubMed]
    [Google Scholar]
  179. Shaw BG, Harding CD. A numerical taxonomic study of lactic acid bacteria from vacuum-packed beef, pork, lamb and bacon. J Appl Bacteriol 1984; 56:25–40 [CrossRef]
    [Google Scholar]
  180. Klein G, Dicks LMT, Pack A, Hack B, Zimmermann K et al. Emended descriptions of Lactobacillus sake (Katagiri, Kitahara, and Fukami) and Lactobacillus curvatus (Abo-Elnaga and Kandler): numerical classification revealed by protein figerprinting and identification based on biochemical patterns and DNA-DNA hybridizations. Int J Syst Bacteriol 1996; 46:367–376 [CrossRef]
    [Google Scholar]
  181. Chaillou S, Lucquin I, Najjari A, Zagorec M, Champomier-Vergès M-C. Population genetics of Lactobacillus sakei reveals three lineages with distinct evolutionary histories. PLoS One 2013; 8:e73253 [CrossRef]
    [Google Scholar]
  182. Koort J, Vandamme P, Schillinger U, Holzapfel W, Björkroth J. Lactobacillus curvatus subsp. melibiosus is a later synonym of Lactobacillus sakei subsp. carnosus . Int J Syst Evol Microbiol 2004; 54:1621–1626 [CrossRef]
    [Google Scholar]
  183. Torriani S, Van Reenen GA, Klein G, Reuter G, Dellaglio F et al. Lactobacillus curvatus subsp. curvatus subsp. nov. and Lactobacillus curvatus subsp. melibiosus subsp. nov. and Lactobacillus sake subsp. sake subsp. nov. and Lactobacillus sake subsp. carnosus subsp. nov., new subspecies of Lactobacillus curvatus Abo-Elnaga and Kandler 1965 and Lactobacillus sake Katagiri, Kitahara, and Fukami 1934 (Klein et al. 1996, emended descriptions), respectively. Int J Syst Bacteriol 1996; 46:1158–1163 [CrossRef][PubMed]
    [Google Scholar]
  184. Cousin FJ, Lynch SM, Harris HMB, McCann A, Lynch DB et al. Detection and genomic characterization of motility in Lactobacillus curvatus: confirmation of motility in a species outside the Lactobacillus salivarius clade. Appl Environ Microbiol 2015; 81:1297–1308 [CrossRef]
    [Google Scholar]
  185. Troili-Petersson G. Studien über die Mikroorganismen des schwedischen Güterkäses. Zentralbl Bakteriol Parasitenkd Infekt Hyg II 1903; 11:120–143
    [Google Scholar]
  186. Terán LC, Coeuret G, Raya R, Zagorec M, Champomier-Vergès M-C et al. Phylogenomic analysis of Lactobacillus curvatus reveals two lineages distinguished by genes for fermenting plant-derived carbohydrates. Genome Biol Evol 2018; 10:1516–1525 [CrossRef]
    [Google Scholar]
  187. Ogawa M, Kaneuchi C, Murakami M, Hayashidani H, Kato Y et al. Lactobacillus fuchuensis sp. nov., isolated from vacuum-packaged refrigerated beef. Int J Syst Evol Microbiol 2002; 52:1151–1154
    [Google Scholar]
  188. Beck R, Weiss N, Winter J. Lactobacillus graminis sp. nov., a new species of facultatively heterofermentative lactobacilli surviving at low pH in grass silage. Syst Appl Microbiol 1988; 10:279–283 [CrossRef]
    [Google Scholar]
  189. Tohno M, Kitahara M, Irisawa T, Masuda T, Uegaki R et al. Description of Lactobacillus iwatensis sp. nov., isolated from orchardgrass (Dactylis glomerata L.) silage, and Lactobacillus backii sp. nov. Int J Syst Evol Microbiol 2013; 63:3854–3860 [CrossRef]
    [Google Scholar]
  190. Yamada Y, Tahara Y. Validation list No.14. J Gen Appl Microbiol 1984; 34:270
    [Google Scholar]
  191. Kandler O, Schillinger U, Weiss N. Lactobacillus bifermentans sp. nov., nom. rev., an organism forming CO2 and H2 from lactic acid. Syst Appl Microbiol 1983; 4:408–412 [CrossRef]
    [Google Scholar]
  192. Chenoll E, Macián C, Aznar R. Lactobacillus rennini sp. nov., isolated from rennin and associated with cheese spoilage. Int J Syst Evol Microbiol 2006; 56:449–452 [CrossRef]
    [Google Scholar]
  193. Kato Y, Sakala RM, Hayashidani H, Kiuchi A, Kaneuchi C et al. Lactobacillus algidus sp. nov., a psychrophilic lactic acid bacterium isolated from vacuum-packaged refrigerated beef. Int J Syst Evol Microbiol 2000; 50:1143–1149 [CrossRef]
    [Google Scholar]
  194. Bechtner J, Wefers D, Schmid J, Vogel RF, Jakob F. Identification and comparison of two closely related dextransucrases released by water kefir borne Lactobacillus hordei TMW 1.1822 and Lactobacillus nagelii TMW 1.1827. Microbiology 2019; 165:956–966 [CrossRef]
    [Google Scholar]
  195. Carr JG, Davies PA. Homofermentative Lactobacilli of Ciders including Lactobacillus mali nov. spec. J Appl Bacteriol 1970; 33:768–774 [CrossRef]
    [Google Scholar]
  196. Kaneuchi C, Seki M, Komagata K. Taxonomic study of Lactobacillus Mali Carr and Davis 1970 and related strains: validation of Lactobacillus Mali Carr and Davis 1970 over Lactobacillus yamanashiensis Nonomura 1983. Int J Syst Bacteriol 1988; 38:269–272 [CrossRef]
    [Google Scholar]
  197. Manes-Lazaro R, Song J, Pardo I, Cho J-C, Ferrer S. Lactobacillus aquaticus sp. nov., isolated from a Korean freshwater pond. Int J Syst Evol Microbiol 2009; 59:2215–2218 [CrossRef]
    [Google Scholar]
  198. De Bruyne K, Camu N, De Vuyst L, Vandamme P. Lactobacillus fabifermentans sp. nov. and Lactobacillus cacaonum sp. nov., isolated from Ghanaian cocoa fermentations. Int J Syst Evol Microbiol 2009; 59:7–12 [CrossRef]
    [Google Scholar]
  199. Chao S-H, Tomii Y, Sasamoto M, Fujimoto J, Tsai Y-C et al. Lactobacillus capillatus sp. nov., a motile bacterium isolated from stinky tofu brine. Int J Syst Evol Microbiol 2008; 58:2555–2559 [CrossRef]
    [Google Scholar]
  200. Nielsen DS, Schillinger U, Franz CMAP, Bresciani J, Amoa-Awua W et al. Lactobacillus ghanensis sp. nov., a motile lactic acid bacterium isolated from Ghanaian cocoa fermentations. Int J Syst Evol Microbiol 2007; 57:1468–1472 [CrossRef]
    [Google Scholar]
  201. Rouse S, Canchaya C, van Sinderen D. Lactobacillus hordei sp. nov., a bacteriocinogenic strain isolated from malted barley. Int J Syst Evol Microbiol 2008; 58:2013–2017 [CrossRef]
    [Google Scholar]
  202. Edwards CG, Collins MD, Lawson PA, Rodriguez AV. Lactobacillus nagelii sp. nov., an organism isolated from a partially fermented wine. Int J Syst Evol Microbiol 2000; 50:699–702 [CrossRef]
    [Google Scholar]
  203. Manes-Lazaro R, Ferrer S, Rossello-Mora R, Pardo I. Lactobacillus oeni sp. nov., from wine. Int J Syst Evol Microbiol 2009; 59:2010–2014 [CrossRef]
    [Google Scholar]
  204. Endo A, Okada S. Lactobacillus satsumensis sp. nov., isolated from mashes of shochu, a traditional Japanese distilled spirit made from fermented rice and other starchy materials. Int J Syst Evol Microbiol 2005; 55:83–85 [CrossRef]
    [Google Scholar]
  205. Puertas AI, Arahal DR, Ibarburu I, Elizaquível P, Aznar R et al. Lactobacillus sicerae sp. nov., a lactic acid bacterium isolated from Spanish natural cider. Int J Syst Evol Microbiol 2014; 64:2949–2955 [CrossRef]
    [Google Scholar]
  206. Irisawa T, Okada S. Lactobacillus sucicola sp. nov., a motile lactic acid bacterium isolated from oak tree (Quercus sp.) sap. Int J Syst Evol Microbiol 2009; 59:2662–2665 [CrossRef]
    [Google Scholar]
  207. Mañes-Lázaro R, Ferrer S, Rosselló-Mora R, Pardo I. Lactobacillus uvarum sp. nov. – A new lactic acid bacterium isolated from Spanish Bobal grape must. Syst Appl Microbiol 2008; 31:425–433 [CrossRef]
    [Google Scholar]
  208. Rodas AM, Chenoll E, Macián MC, Ferrer S, Pardo I. Lactobacillus vini sp. nov., a wine lactic acid bacterium homofermentative for pentoses. Int J Syst Evol Microbiol 2006; 56:513–517 [CrossRef]
    [Google Scholar]
  209. Kandler O. Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek 1983; 49:209–224 [CrossRef]
    [Google Scholar]
  210. Kakimoto S, Okazaki K, Sakane T, Imai K, Sumino Y et al. Isolation and taxonomie characterization of acid urease-producing bacteria. Agric Biol Chem 1989; 53:1111–1117 [CrossRef]
    [Google Scholar]
  211. Krumbeck JA, Marsteller NL, Frese SA, Peterson DA, Ramer-Tait AE et al. Characterization of the ecological role of genes mediating acid resistance in L actobacillus reuteri during colonization of the gastrointestinal tract. Environ Microbiol 2016; 18:2172–2184 [CrossRef]
    [Google Scholar]
  212. Li Y, Raftis E, Canchaya C, Fitzgerald GF, van SD. Polyphasic analysis indicates that Lactobacillus salivarius subsp. salivarius and Lactobacillus salivarius subsp. salicinius do not merit separate subspecies status. Int J Syst Evol Microbiol 2006; 56:2397–2403 [CrossRef]
    [Google Scholar]
  213. Raftis EJ, Salvetti E, Torriani S, Felis GE, O'Toole PW. Genomic diversity of Lactobacillus salivarius . Appl Environ Microbiol 2011; 77:954–965 [CrossRef]
    [Google Scholar]
  214. Naser SM, Vancanneyt M, Hoste B, Snauwaert C, Swings J. Lactobacillus cypricasei Lawson et al. 2001 is a later heterotypic synonym of Lactobacillus acidipiscis Tanasupawat et al. 2000. Int J Syst Evol Microbiol 2006; 56:1681–1683 [CrossRef]
    [Google Scholar]
  215. Tanasupawat S, Shida O, Okada S, Komagata K. Lactobacillus acidipiscis sp. nov. and Weissella thailandensis sp. nov., isolated from fermented fish in Thailand. Int J Syst Evol Microbiol 2000; 50:1479–1485 [CrossRef]
    [Google Scholar]
  216. Dent VE, Williams RAD. Lactobacillus animalis sp. nov., a new species of Lactobacillus from the alimentary canal of animals. Zentralblatt für Bakteriologie Mikrobiologie und Hygiene: I. Abt. Originale C: Allgemeine, angewandte und ökologische Mikrobiologie 1982; 3:377–386 [CrossRef]
    [Google Scholar]
  217. Osawa R, Fujisawa T, Pukall R. Lactobacillus apodemi sp. nov., a tannase-producing species isolated from wild mouse faeces. Int J Syst Evol Microbiol 2006; 56:1693–1696 [CrossRef]
    [Google Scholar]
  218. Vela AI, Fernandez A. Espinosa de los Monteros A, Goyache J, Herraez P, Tames B, Cruz F, Domínguez L, Fernández-Garayzábal JF (2008) Lactobacillus ceti sp. nov., isolated from beaked whales (Ziphius cavirostris). Int J Syst Evol Microbiol 58:891–894
    [Google Scholar]
  219. Morotomi M, Yuki N, Shimazaki T, Yuyama T, Kushiro A et al. Lactobacillus equi sp. nov., a predominant intestinal Lactobacillus species of the horse isolated from faeces of healthy horses. Int J Syst Evol Microbiol 2002; 52:211–214 [CrossRef]
    [Google Scholar]
  220. Endo A, Irisawa T, Futagawa-Endo Y, Salminen S, Ohkuma M et al. Lactobacillus faecis sp. nov., isolated from animal faeces. Int J Syst Evol Microbiol 2013; 63:4502–4507 [CrossRef]
    [Google Scholar]
  221. Morita H, Shiratori C, Murakami M, Takami H, Kato Y et al. Lactobacillus hayakitensis sp. nov., isolated from intestines of healthy thoroughbreds. Int J Syst Evol Microbiol 2007; 57:2836–2839 [CrossRef]
    [Google Scholar]
  222. Hemme D, Raibaud P, Ducluzeau R, Galpin J, Sicard P et al. Lactobacillus murinus n. sp., une nouvelle espèce de la flore dominante autochtone du tube digestif du rat et de la souris. Ann Microbiol 1980; 131A:297–308
    [Google Scholar]
  223. Chen Y-S, Miyashita M, Suzuki K-i, Sato H, Hsu J-S et al. Lactobacillus pobuzihii sp. nov., isolated from pobuzihi (fermented cummingcordia). Int J Syst Evol Microbiol 2010; 60:1914–1917 [CrossRef]
    [Google Scholar]
  224. Sharpe ME, Latham MJ, Garvie EI, Zirngibl J, Kandler O. Two new species of Lactobacillus isolated from the bovine rumen, Lactobacillus ruminis sp.nov. and Lactobacillus vitulinus sp.nov. J Gen Microbiol 1973; 77:37–49 [CrossRef]
    [Google Scholar]
  225. O’ Donnell MM, Harris HMB, Lynch DB, Ross RP, O’Toole PW. Lactobacillus ruminis strains cluster according to their mammalian gut source. BMC Microbiol 2015; 15:80 [CrossRef]
    [Google Scholar]
  226. Pedersen C, Roos S. Lactobacillus saerimneri sp. nov., isolated from pig faeces. Int J Syst Evol Microbiol 2004; 54:1365–1368 [CrossRef]
    [Google Scholar]
  227. Tanizawa Y, Sakamoto M, Nakamura Y, Ohkuma M, Kojima Y et al. Lactobacillus salitolerans sp. nov., a novel lactic acid bacterium isolated from spent mushroom substrates. Int J Syst Evol Microbiol 2019; 69:964–969
    [Google Scholar]
  228. Torriani S, Felis GE, Dellaglio F. Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primers. Appl Environ Microbiol 2001; 67:3450–3454 [CrossRef]
    [Google Scholar]
  229. Bringel F, Castioni A, Olukoya DK, Felis GE, Torriani S. Lactobacillus plantarum subsp. argentoratensis subsp. nov., isolated from vegetable matrices. Int J Syst Evol Microbiol 2005; 55:1629–1634 [CrossRef]
    [Google Scholar]
  230. Martino ME, Bayjanov JR, Caffrey BE, Wels M, Joncour P et al. Nomadic lifestyle of Lactobacillus plantarum revealed by comparative genomics of 54 strains isolated from different habitats. Environ Microbiol 2016; 18:4974–4989 [CrossRef]
    [Google Scholar]
  231. Bergey DH, Harrison F, Breed R, Hammer F. Bergey’s Manual of Determinative Bacteriology, 1st ed. Baltimore: The Williams & Wilkins Co.,; 1923
    [Google Scholar]
  232. Storelli G, Strigini M, Grenier T, Bozonnet L, Schwarzer M et al. Drosophila perpetuates nutritional mutualism by promoting the fitness of its intestinal symbiont Lactobacillus plantarum . Cell Metab 2018; 27:362–377 [CrossRef]
    [Google Scholar]
  233. Liu DD, Gu CT. Lactobacillus pingfangensis sp. nov., Lactobacillus daoliensis sp. nov., Lactobacillus nangangensis sp. nov., Lactobacillus daowaiensis sp. nov., Lactobacillus dongliensis sp. nov., Lactobacillus songbeiensis sp. nov. and Lactobacillus kaifaensis sp. nov., isolated from traditional Chinese pickle. Int J Syst Evol Microbiol 2019; 69:3237–3247 [CrossRef][PubMed]
    [Google Scholar]
  234. Mao Y, Horvath P, Chen M. Lactobacillus herbarum sp. nov., a species related to Lactobacillus plantarum . Int J Syst Evol Microbiol 2015; 65:4682–4688 [CrossRef]
    [Google Scholar]
  235. Miyashita M, Tanaka N, Chaipitakchonlatarn W, Tanasupawat S, Kamakura Y et al. Lactobacillus plajomi sp. nov. and Lactobacillus modestisalitolerans sp. nov., isolated from traditional fermented foods. Int J Syst Evol Microbiol 2015; 65:2485–2490 [CrossRef]
    [Google Scholar]
  236. Wuyts S, Van Beeck W, Oerlemans EFM, Wittouck S, Claes IJJ et al. Carrot juice fermentations as man-made microbial ecosystems dominated by lactic acid bacteria. Appl Environ Microbiol 2018; 84:e00134-18–18 [CrossRef]
    [Google Scholar]
  237. Curk M-C, Hubert J-C, Bringel F. Lactobacillus paraplantarum sp. nov., a new species related to Lactobacillus plantarum . Int J Syst Bacteriol 1996; 46:595–598 [CrossRef]
    [Google Scholar]
  238. Zanoni P, Farrow JAE, Phillips BA, Collins MD. Lactobacillus pentosus (Fred, Peterson, and Anderson) sp. nov., nom. rev. Int J Syst Bacteriol 1987; 37:339–341 [CrossRef]
    [Google Scholar]
  239. CT G, Wang F, CY L, Liu F, Huo GC. Lactobacillus xiangfangensis sp. nov., isolated from Chinese pickle. Int J Syst Evol Microbiol 2012; 62:860–863
    [Google Scholar]
  240. Ripari V, Bai Y, Gänzle MG. Metabolism of phenolic acids in whole wheat and rye malt sourdoughs. Food Microbiol 2019; 77:43–51 [CrossRef]
    [Google Scholar]
  241. Gaur G, J-H O, Filannino P, Gobbetti M, van Pijkeren J-P et al. Genetic determinants of hydroxycinnamic acid metabolism in heterofermentative lactobacilli. Appl Environ Microbiol 2020; 86:e02461-19 [CrossRef]
    [Google Scholar]
  242. Corsetti A, Settanni L, van Sinderen D, Felis GE, Dellaglio F. Lactobacillus rossii sp. nov., isolated from wheat sourdough. Int J Syst Evol Microbiol 2005; 55:35–40 [CrossRef]
    [Google Scholar]
  243. Filannino P, Cavoski I, Thlien N, Vincentini O, De Angelis M et al. Lactic acid fermentation of cactus cladodes (Opuntia ficus-indica L.) generates flavonoid derivatives with antioxidant and anti-Inflammatory properties. PLoS One 2016; 11:e0152575 [CrossRef]
    [Google Scholar]
  244. Asakawa Y, Takesue N, Asano S, Shimotsu S, Iijima K et al. Lactobacillus curtus sp. nov., isolated from beer in Finland. Int J Syst Evol Microbiol 2017; 67:3899–3906 [CrossRef]
    [Google Scholar]
  245. Aslam Z, Im W-T, Ten LN, Lee M-J, Kim K-H et al. Lactobacillus siliginis sp. nov., isolated from wheat sourdough in South Korea. Int J Syst Evol Microbiol 2006; 56:2209–2213 [CrossRef][PubMed]
    [Google Scholar]
  246. Dellaglio F, Vancanneyt M, Endo A, Vandamme P, Felis GE. Lactobacillus durianis Leisner et al. 2002 is a later heterotypic synonym of Lactobacillus vaccinostercus Kozaki and Okada 1983. Int J Syst Evol Microbiol 2006; 56:1721–1724 [CrossRef]
    [Google Scholar]
  247. Okada S, Suzuki Y, Kozaki M. A new heterofermentative Lactobacillus species with meso-diaminopimelic acid in peptidoglycan, Lactobacillus vaccinostercus Kozaki and Okada sp. nov. J Gen Appl Microbiol 1979; 25:215–221 [CrossRef]
    [Google Scholar]
  248. Tohno M, Kitahara M, Uegaki R, Irisawa T, Ohkuma M et al. Lactobacillus hokkaidonensis sp. nov., isolated from subarctic timothy grass (Phleum pratense L.) silage. Int J Syst Evol Microbiol 2013; 63:2526–2531 [CrossRef]
    [Google Scholar]
  249. Koort J, Murros A, Coenye T, Eerola S, Vandamme P et al. Lactobacillus oligofermentans sp. nov., associated with spoilage of modified-atmosphere-packaged poultry products. Appl Environ Microbiol 2005; 71:4400–4406 [CrossRef]
    [Google Scholar]
  250. Kleynmans U, Heinzl H, Hammes WP. Lactobacillus suebicus sp. nov., an obligately heterofermentative Lactobacillus species isolated from fruit mashes. Syst Appl Microbiol 1989; 11:267–271 [CrossRef]
    [Google Scholar]
  251. Oberg CJ, Oberg TS, Culumber MD, Ortakci F, Broadbent JR et al. Lactobacillus wasatchensis sp. nov., a non-starter lactic acid bacteria isolated from aged Cheddar cheese. Int J Syst Evol Microbiol 2016; 66:158–164 [CrossRef]
    [Google Scholar]
  252. Teixeira JS, Seeras A, Sanchez-Maldonado AF, Zhang C, Su MS-W et al. Glutamine, glutamate, and arginine-based acid resistance in Lactobacillus reuteri . Food Microbiol 2014; 42:172–180 [CrossRef][PubMed]
    [Google Scholar]
  253. Tieking M, Kaditzky S, Valcheva R, Korakli M, Vogel RF et al. Extracellular homopolysaccharides and oligosaccharides from intestinal lactobacilli. J Appl Microbiol 2005; 99:692–702 [CrossRef]
    [Google Scholar]
  254. Dellaglio F, Torriani S, Felis GE. Reclassification of Lactobacillus cellobiosus Rogosa et al. 1953 as a later synonym of Lactobacillus fermentum Beijerinck 1901. Int J Syst Evol Microbiol 2004; 54:809–812 [CrossRef]
    [Google Scholar]
  255. Beijerinck M. Anhäufungsversuche MIT Ureumbakterien. Ureumspaltung durch urease und durch Katabolismus. Zentralbl Bakteriol Parasitenkd Infekt Hyg II Abt 1901; 7:33–61
    [Google Scholar]
  256. Kim H-J, Eom S-J, Park S-J, Cha C-J, Kim G-B. Lactobacillus alvi sp. nov., isolated from the intestinal tract of chicken. FEMS Microbiol Lett 2011; 323:83–87 [CrossRef]
    [Google Scholar]
  257. Killer J, Pechar R, Salmonová H, Švejstil R et al. Lactobacillus caviae sp. nov., an obligately heterofermentative bacterium isolated from the oral cavity of a guinea pig (Cavia aperea f. porcellus). Int J Syst Evol Microbiol 2017; 67:2903–2909 [CrossRef]
    [Google Scholar]
  258. Nikolaitchouk N, Wacher C, Falsen E, Andersch B, Collins MD et al. Lactobacillus coleohominis sp. nov., isolated from human sources. Int J Syst Evol Microbiol 2001; 51:2081–2085 [CrossRef]
    [Google Scholar]
  259. Endo A, Roos S, Satoh E, Morita H, Okada S. Lactobacillus equigenerosi sp. nov., a coccoid species isolated from faeces of thoroughbred racehorses. Int J Syst Evol Microbiol 2008; 58:914–918 [CrossRef]
    [Google Scholar]
  260. Muller M, Ehrmann MA, Vogel RF. Lactobacillus frumenti sp. nov., a new lactic acid bacterium isolated from rye-bran fermentations with a long fermentation period. Int J Syst Evol Microbiol 2000; 50:2127–2133 [CrossRef]
    [Google Scholar]
  261. Tsuchida S, Kitahara M, Nguema PPM, Norimitsu S, Fujita S et al. Lactobacillus gorillae sp. nov., isolated from the faeces of captive and wild western lowland gorillas (Gorilla gorilla gorilla). Int J Syst Evol Microbiol 2014; 64:4001–4006 [CrossRef]
    [Google Scholar]
  262. Felis GE, Vancanneyt M, Snauwaert C, Swings J, Torriani S. Reclassification of Lactobacillus thermotolerans Niamsup et al. 2003 as a later synonym of Lactobacillus ingluviei Baele et al. 2003. Int J Syst Evol Microbiol 2006; 56:793–795 [CrossRef]
    [Google Scholar]
  263. Baele M, Vancanneyt M, Devriese LA, Lefebvre K, Swings J. Lactobacillus ingluviei sp. nov., isolated from the intestinal tract of pigeons. Int J Syst Evol Microbiol 2003; 53:133–136 [CrossRef]
    [Google Scholar]
  264. Roos S, Karner F, Axelsson L, Jonsson H. Lactobacillus mucosae sp. nov., a new species with in vitro mucus-binding activity isolated from pig intestine. Int J Syst Evol Microbiol 2000; 50:251–258 [CrossRef]
    [Google Scholar]
  265. Farrow JAE, Collins MD. Notes: Lactobacillus oris sp. nov. from the human oral cavity. Int J Syst Bacteriol 1988; 38:116–118 [CrossRef]
    [Google Scholar]
  266. Wiese BG, STROHMAR W, Rainey FA, Diekmann H. Lactobacillus panis sp. nov., from sourdough with a long fermentation period. Int J Syst Bacteriol 1996; 46:449–453 [CrossRef]
    [Google Scholar]
  267. Vogel RF, Böcker G, Stolz P, Ehrmann M, Fanta D et al. Identification of lactobacilli from sourdough and description of Lactobacillus pontis sp. nov. Int J Syst Bacteriol 1994; 44:223–229 [CrossRef]
    [Google Scholar]
  268. Kandler O, Stetter K-O, Köhl R. Lactobacillus reuteri sp. nov., a new species of heterofermentative lactobacilli. Zentralbl Bakteriol Hyg Abt IOrig C 1980; 1:264–269 [CrossRef]
    [Google Scholar]
  269. Duar RM, Frese SA, Lin XB, Fernando SC, Burkey TE et al. Experimental evaluation of host adaptation of Lactobacillus reuteri to different vertebrate species. Appl Environ Microbiol 2017; 83:e00132–17 [CrossRef]
    [Google Scholar]
  270. Frese SA, Benson AK, Tannock GW, Loach DM, Kim J et al. The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri . PLoS Genet 2011; 7:e1001314 [CrossRef]
    [Google Scholar]
  271. Frese SA, MacKenzie DA, Peterson DA, Schmaltz R, Fangman T et al. Molecular characterization of host-specific biofilm formation in a vertebrate gut symbiont. PLoS Genet 2013; 9:e1004057 [CrossRef]
    [Google Scholar]
  272. Lin XB, Lohans CT, Duar R, Zheng J, Vederas JC et al. Genetic determinants of reutericyclin biosynthesis in Lactobacillus reuteri . Appl Environ Microbiol 2015; 81:2032–2041 [CrossRef]
    [Google Scholar]
  273. Zheng J, Zhao X, Lin XB, Gänzle M. Comparative genomics Lactobacillus reuteri from sourdough reveals adaptation of an intestinal symbiont to food fermentations. Sci Rep 2015; 5:18234 [CrossRef]
    [Google Scholar]
  274. Ehrmann MA, Brandt M, Stolz P, Vogel RF, Korakli M. Lactobacillus secaliphilus sp. nov., isolated from type II sourdough fermentation. Int J Syst Evol Microbiol 2007; 57:745–750 [CrossRef]
    [Google Scholar]
  275. Enbley TM, Faquir N, Bossart W, Collins MD. Lactobacillus vaginalis sp. nov. from the human vagina. Int J Syst Bacteriol 1989; 39:368–370 [CrossRef]
    [Google Scholar]
  276. Afouda P, Fournier PE, Raoult D, Merhej V. ‘Lactobacillus timonensis’ sp. nov., a new bacterial species isolated from the human gut. New Microbes New Infect 2017; 19:121–122 [CrossRef]
    [Google Scholar]
  277. Russell C, Walker TK. Lactobacillus malefermentans n.sp., isolated from beer. J Gen Microbiol 1953; 8:160–162 [CrossRef]
    [Google Scholar]
  278. Farrow JAE, Phillips BA, Collins MD. Nucleic acid studies on some heterofermentative lactobacilli: Description of Lactobacillus malefermentans sp.nov. and Lactobacillus parabuchneri sp.nov. FEMS Microbiol Lett 1988; 55:163–168 [CrossRef]
    [Google Scholar]
  279. Carr JG, Davies PA. The ecology and classification of strains of Lactobacillus collinoides nov. spec.: a bacterium commonly Found in fermenting apple juice. J Appl Bacteriol 1972; 35:463–471 [CrossRef]
    [Google Scholar]
  280. Liang Z-Q, Srinivasan S, Kim Y-J, Kim H-B, Wang H-T et al. Lactobacillus kimchicus sp. nov., a -glucosidase-producing bacterium isolated from kimchi. Int J Syst Evol Microbiol 2011; 61:894–897 [CrossRef]
    [Google Scholar]
  281. Tohno M, Ohkuma M, Masuda T, Tajima K, Ohmori H et al. Lactobacillus mixtipabuli sp. nov. isolated from total mixed ration silage. Int J Syst Evol Microbiol 2015; 65:1981–1985 [CrossRef]
    [Google Scholar]
  282. Chao S-H, Sasamoto M, Kudo Y, Fujimoto J, Tsai Y-C et al. Lactobacillus odoratitofui sp. nov., isolated from stinky tofu brine. Int J Syst Evol Microbiol 2010; 60:2903–2907 [CrossRef]
    [Google Scholar]
  283. Tohno M, Kitahara M, Irisawa T, Inoue H, Uegaki R et al. Lactobacillus oryzae sp. nov., isolated from fermented rice grain (Oryza sativa L. subsp. japonica). Int J Syst Evol Microbiol 2013; 63:2957–2962 [CrossRef]
    [Google Scholar]
  284. Ehrmann MA, Vogel RF. Taxonomic note “Lactobacillus pastorianus” (Van Laer, 1892) a former synonym for Lactobacillus paracollinoides . Syst Appl Microbiol 2005; 28:54–56 [CrossRef]
    [Google Scholar]
  285. Suzuki K, Funahashi W, Koyanagi M, Yamashita H. Lactobacillus paracollinoides sp. nov., isolated from brewery environments. Int J Syst Evol Microbiol 2004; 54:115–117 [CrossRef]
    [Google Scholar]
  286. Tohno M, Tanizawa Y, Irisawa T, Masuda T, Sakamoto M et al. Lactobacillus silagincola sp. nov. and Lactobacillus pentosiphilus sp. nov., isolated from silage. Int J Syst Evol Microbiol 2017; 67:3639–3644 [CrossRef]
    [Google Scholar]
  287. Tohno M, Kitahara M, Irisawa T, Masuda T, Uegaki R et al. Lactobacillus silagei sp. nov., isolated from orchardgrass silage. Int J Syst Evol Microbiol 2013; 63:4613–4618 [CrossRef]
    [Google Scholar]
  288. Kitahara M, Sakamoto M, Benno Y. Lactobacillus similis sp. nov., isolated from fermented cane molasses. Int J Syst Evol Microbiol 2010; 60:187–190 [CrossRef]
    [Google Scholar]
  289. Bergey DH, Breed RS, Hammer BW, Huntoon FM, Murray EGD et al. Bergey’s Manual of Determinative Bacteriology, 4th ed. Baltimore: The Williams & Wilkins Co; 1934
    [Google Scholar]
  290. Fraunhofer ME, Geißler AJ, Behr J, Vogel RF. Comparative genomics of Lactobacillus brevis reveals a significant plasmidome overlap of brewery and insect isolates. Curr Microbiol 2019; 76:37–47 [CrossRef]
    [Google Scholar]
  291. Vancanneyt M et al. Lactobacillus acidifarinae sp. nov. and Lactobacillus zymae sp. nov., from wheat sourdoughs. Int J Syst Evol Microbiol 2005; 55:615–620 [CrossRef]
    [Google Scholar]
  292. Guu J-R, Wang L-T, Hamada M, Wang C, Lin R-W et al. Lactobacillus bambusae sp. nov., isolated from traditional fermented ma bamboo shoots in Taiwan. Int J Syst Evol Microbiol 2018; 68:2424–2430 [CrossRef]
    [Google Scholar]
  293. Koob J, Jacob F, Wenning M, Hutzler M. Lactobacillus cerevisiae sp. nov., isolated from a spoiled brewery sample. Int J Syst Evol Microbiol 2017; 67:3452–3457 [CrossRef]
    [Google Scholar]
  294. Valcheva R, Korakli M, Onno B, Prévost H, Ivanova I. Lactobacillus hammesii sp. nov., isolated from French sourdough. Int J Syst Evol Microbiol 2005; 55:763–767 [CrossRef]
    [Google Scholar]
  295. Black BA, Zannini E, Curtis JM, Gänzle MG. Antifungal hydroxy fatty acids produced during sourdough fermentation: microbial and enzymatic pathways, and antifungal activity in bread. Appl Environ Microbiol 2013; 79:1866–1873 [CrossRef]
    [Google Scholar]
  296. Bui TPN, Kim Y-J, In J-G, Yang D-C. Lactobacillus koreensis sp. nov., isolated from the traditional Korean food kimchi. Int J Syst Evol Microbiol 2011; 61:772–776 [CrossRef][PubMed]
    [Google Scholar]
  297. Scheirlinck I, Van der Meulen R, Van Schoor A, Cleenwerck I, Huys G et al. Lactobacillus namurensis sp. nov., isolated from a traditional Belgian sourdough. Int J Syst Evol Microbiol 2007; 57:223–227 [CrossRef]
    [Google Scholar]
  298. Vancanneyt M, Naser SM, Engelbeen K, De Wachter M, Van der Meulen R. Reclassification of Lactobacillus brevis strains LMG 11494 and LMG 11984 as Lactobacillus parabrevis sp. nov. Int J Syst Evol Microbiol 2006; 56:1553–1557 [CrossRef]
    [Google Scholar]
  299. Ehrmann MA, Preissler P, Danne M, Vogel RF. Lactobacillus paucivorans sp. nov., isolated from a brewery environment. Int J Syst Evol Microbiol 2010; 60:2353–2357 [CrossRef]
    [Google Scholar]
  300. Hiraga K, Ueno Y, Sukontasing S, Tanasupawat S, Oda K. Lactobacillus senmaizukei sp. nov., isolated from Japanese pickle. Int J Syst Evol Microbiol 2008; 58:1625–1629 [CrossRef]
    [Google Scholar]
  301. Meroth CB, Hammes WP, Hertel C. Characterisation of the microbiota of rice sourdoughs and description of Lactobacillus spicheri sp. nov. Syst Appl Microbiol 2004; 27:151–159 [CrossRef]
    [Google Scholar]
  302. Liou J-S, Huang C-H, Wang C-L, Lee A-Y, Mori K et al. Lactobacillus suantsaii sp. nov., isolated from suan-tsai, a traditional Taiwanese fermented mustard green. Int J Syst Evol Microbiol 2019; 69:1484–1489 [CrossRef]
    [Google Scholar]
  303. Yi E-J, Yang J-E, Lee JM, Park Y, Park S-Y et al. Lactobacillus yonginensis sp. nov., a lactic acid bacterium with ginsenoside converting activity isolated from Kimchi. Int J Syst Evol Microbiol 2013; 63:3274–3279 [CrossRef][PubMed]
    [Google Scholar]
  304. Charlton DB, Nelson ME, Werkman CH. Physiology of Lactobacillus fructivorans sp. nov. isolated from spoiled salad dressing. Iowa State J Sci 1934; 9:1–11
    [Google Scholar]
  305. Weiss N, Schillinger U, Kandler O. Lactobacillus trichodes, and Lactobacillus heterohiochii, subjective synonyms of Lactobacillus fructivorans . Syst Appl Microbiol 1983; 4:507–511 [CrossRef]
    [Google Scholar]
  306. Zhao W, Gu CT. Lactobacillus homohiochii is a later heterotypic synonym of Lactobacillus fructivorans . Int J Syst Evol Microbiol 2019; 69:1720–1723 [CrossRef][PubMed]
    [Google Scholar]
  307. Kitahara K, Kaneko T, Goto O. Taxonomic studies on the hiochi-bacteria, specific saprophytes of sake. II. Identification and classification of hiochi-bacteria. J Gen Appl Microbiol 1957; 3:111–120
    [Google Scholar]
  308. Suzuki K, Asano S, Iijima K, Kitamoto K. Sake and beer spoilage lactic acid bacteria - a review. J Inst Brew 2008; 114:209–223 [CrossRef]
    [Google Scholar]
  309. Wong CNA, Ng P, Douglas AE. Low-diversity bacterial community in the gut of the fruitfly Drosophila melanogaster . Environ Microbiol 2011; 13:1889–1900 [CrossRef]
    [Google Scholar]
  310. Endo A, Futagawa-Endo Y, Sakamoto M, Kitahara M, Dicks LMT. Lactobacillus florum sp. nov., a fructophilic species isolated from flowers. Int J Syst Evol Microbiol 2010; 60:2478–2482 [CrossRef]
    [Google Scholar]
  311. Techo S, Miyashita M, Shibata C, Tanaka N, Wisetkhan P et al. Lactobacillus ixorae sp. nov., isolated from a flower (West-Indian jasmine). Int J Syst Evol Microbiol 2016; 66:5500–5505 [CrossRef]
    [Google Scholar]
  312. Back W, Bohak I, Ehrmann M, Ludwig W, Schleifer KH. Revival of the species Lactobacillus lindneri and the design of a species specific oligonucleotide probe. Syst Appl Microbiol 1996; 19:322–325 [CrossRef]
    [Google Scholar]
  313. Kline L, Sugihara TF. Isolation and characterization of undescribed bacterial species responsible for the souring activity. Appl Microbiol 1971; 21:459–465
    [Google Scholar]
  314. Trüper HG, de' Clari L. Taxonomic note: erratum and correction of further specific epithets formed as substantives (nouns) 'in apposition'. Int J Syst Bacteriol 1998; 48:615 [CrossRef]
    [Google Scholar]
  315. Spicher G, Schröder R. Die Mikroflora des Sauerteiges, VI. Untersuchungen über die Art der in “Reinzuchtsauern” anzutreffenden Milchsäurebakterien. Genus Lactobacillus Beijerinck. Z Lebensm Unters Forsch 1978; 167:342–345
    [Google Scholar]
  316. Vogel RF, Pavlovic M, Ehrmann MA, Wiezer A, Liesegang H et al. Genomic analysis reveals Lactobacillus sanfranciscensis as stable element in traditional sourdoughs. Microb Cell Fact 2011; 10 Suppl 1:S6 [CrossRef][PubMed]
    [Google Scholar]
  317. Gänzle MG, Ehmann M, Hammes WP. Modeling of growth of Lactobacillus sanfranciscensis and Candida milleri in response to process parameters of sourdough fermentation. Appl Environ Microbiol 1998; 64:2616–2623 [CrossRef][PubMed]
    [Google Scholar]
  318. Boiocchi F, Porcellato D, Limonta L, Picozzi C, Vigentini I et al. Insect frass in stored cereal products as a potential source of Lactobacillus sanfranciscensis for sourdough ecosystem. J Appl Microbiol 2017; 123:944–955 [CrossRef][PubMed]
    [Google Scholar]
  319. Hoang V-A, Kim Y-J, Nguyen N-L, Kim S-K, Yang D-C. Lactobacillus vespulae sp. nov., isolated from gut of a queen wasp (Vespula vulgaris). Int J Syst Evol Microbiol 2015; 65:3326–3332 [CrossRef][PubMed]
    [Google Scholar]
  320. McFrederick QS, Thomas JM, Neff JL, Vuong HQ, Russell KA et al. Flowers and wild megachilid bees share microbes. Microb Ecol 2017; 73:188–200 [CrossRef][PubMed]
    [Google Scholar]
  321. Edwards CG, Haag KM, Collins MD, Hutson RA, Huang YC. Lactobacillus kunkeei sp. nov.: a spoilage organism associated with grape juice fermentations. J Appl Microbiol 1998; 84:698–702 [CrossRef][PubMed]
    [Google Scholar]
  322. Chiou T-Y, Suda W, Oshima K, Hattori M, Matsuzaki C et al. Lactobacillus kosoi sp. nov., a fructophilic species isolated from kôso, a Japanese sugar-vegetable fermented beverage. Antonie van Leeuwenhoek 2018; 111:1149–1156 [CrossRef][PubMed]
    [Google Scholar]
  323. Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2018; 68:2707–2709 [CrossRef][PubMed]
    [Google Scholar]
  324. McFrederick QS, Vuong HQ, Rothman JA. Lactobacillus micheneri sp. nov., Lactobacillus timberlakei sp. nov. and Lactobacillus quenuiae sp. nov., lactic acid bacteria isolated from wild bees and flowers. Int J Syst Evol Microbiol 2018; 68:1879–1884 [CrossRef][PubMed]
    [Google Scholar]
  325. Kawasaki S, Kurosawa K, Miyazaki M, Sakamoto M, Ohkuma M et al. Lactobacillus ozensis sp. nov., isolated from mountain flowers. Int J Syst Evol Microbiol 2011; 61:2435–2438 [CrossRef][PubMed]
    [Google Scholar]
  326. Arena ME, Landete JM, Manca de Nadra MC, Pardo I, Ferrer S. Factors affecting the production of putrescine from agmatine by Lactobacillus hilgardii xB isolated from wine. J Appl Microbiol 2008; 105:158–165 [CrossRef][PubMed]
    [Google Scholar]
  327. Lei X, Sun G, Xie J, Wei D. Lactobacillus curieae sp. nov., isolated from stinky tofu brine. Int J Syst Evol Microbiol 2013; 63:2501–2505 [CrossRef][PubMed]
    [Google Scholar]
  328. Krooneman J, Faber F, Alderkamp AC, Elferink SJ, Driehuis F et al. Lactobacillus diolivorans sp. nov., a 1,2-propanediol-degrading bacterium isolated from aerobically stable maize silage. Int J Syst Evol Microbiol 2002; 52:639–646 [CrossRef][PubMed]
    [Google Scholar]
  329. Endo A, Okada S. Lactobacillus farraginis sp. nov. and Lactobacillus parafarraginis sp. nov., heterofermentative lactobacilli isolated from a compost of distilled shochu residue. Int J Syst Evol Microbiol 2007; 57:708–712 [CrossRef][PubMed]
    [Google Scholar]
  330. Douglas HC, Cruess W. A Lactobacillus from California wine: Lactobacillus hilgardii . J Food Sci 1936; 1:113–119 [CrossRef]
    [Google Scholar]
  331. Vaughn RH, Douglas HC, Fornachon JCM. The taxonomy of Lactobacillus hilgardii and related heterofermentative lactobacilli. Hilgardia 1949; 19:133–139 [CrossRef]
    [Google Scholar]
  332. Kandler O, Kunath P. Lactobacillus kefir sp.nov., a component of the microflora of Kefir. Syst Appl Microbiol 1983; 4:286–294 [CrossRef][PubMed]
    [Google Scholar]
  333. Watanabe K, Fujimoto J, Tomii Y, Sasamoto M, Makino H et al. Lactobacillus kisonensis sp. nov., Lactobacillus otakiensis sp. nov., Lactobacillus rapi sp. nov. and Lactobacillus sunkii sp. nov., heterofermentative species isolated from sunki, a traditional Japanese pickle. Int J Syst Evol Microbiol 2009; 59:754–760 [CrossRef][PubMed]
    [Google Scholar]
  334. Vancanneyt M, Engelbeen K, De Wachter M, Vandemeulebroecke K, Cleenwerck I et al. Reclassification of Lactobacillus ferintoshensis as a later heterotypic synonym of Lactobacillus parabuchneri . Int J Syst Evol Microbiol 2005; 55:2195–2198 [CrossRef][PubMed]
    [Google Scholar]
  335. Bhandari RR, Walker TK. Lactobacillus frigidus n.sp. isolated from brewery yeast. J Gen Microbiol 1953; 8:330–332 [CrossRef][PubMed]
    [Google Scholar]
  336. Tanizawa Y, Kobayashi H, Kaminuma E, Sakamoto M, Ohkuma M et al. Genomic characterization reconfirms the taxonomic status of Lactobacillus parakefiri . Biosci Microbiota Food Health 2017; 36:129–134 [CrossRef][PubMed]
    [Google Scholar]
  337. Nicaise B, Maaloum M, Lo CI, Armstrong N, Bretelle F et al. Taxono-genomics description of 'Lactobacillus raoultii sp. nov.', strain Marseille-P4006T, a new Lactobacillus species isolated from the female genital tract of a patient with bacterial vaginosis. New Microbes New Infect 2019; 29:100534 [CrossRef][PubMed]
    [Google Scholar]
  338. Long GY, Wei YX, Tu W, Gu CT. Lactobacillus hegangensis sp. nov., Lactobacillus suibinensis sp. nov., Lactobacillus daqingensis sp. nov., Lactobacillus yichunensis sp. nov., Lactobacillus mulanensis sp. nov., Lactobacillus achengensis sp. nov., Lactobacillus wuchangensis sp. nov., Lactobacillus gannanensis sp. nov., Lactobacillus binensis sp. nov. and Lactobacillus angrenensis sp. nov., isolated from Chinese traditional pickle and yogurt. Int J Syst Evol Microbiol 2020; in press: [CrossRef][PubMed]
    [Google Scholar]
  339. Diaz M, Sayavedra L, Atter A, Mayer MJ, Saha S et al. Lactobacillus garii sp. nov., isolated from a fermented cassava product. Int J Syst Evol Microbiol 2020; 38:
    [Google Scholar]
  340. Zhang Z, Wang Y, Hou Q, Zhao H, Li W et al. Lactobacillus enshiensis sp. nov., a novel arsenic-resistant bacterium. Int J Syst Evol Microbiol 2020; 6: [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004107
Loading
/content/journal/ijsem/10.1099/ijsem.0.004107
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL

Supplementary material 2

EXCEL

Supplementary material 3

EXCEL

Supplementary material 4

EXCEL

Supplementary material 5

EXCEL

Supplementary material 6

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error