1887

Abstract

A Gram-stain-negative, yellow, motile by gliding, filamentous bacterium, designated SR 2-06, was isolated from surface-sterilized root of garden cosmos. 16S rRNA gene sequence analysis indicated that SR 2-06 was related most closely to YT21 of the family at a sequence similarity of 96.90 %, while levels of similarity to other related taxa were less than 93.08 %. Strain SR 2-06 exhibited similar features to in that it contained MK-7 as the major respiratory quinone, and iso-C G, iso-C and a summed feature consisting of Cω6 and/or Cω7 as the major fatty acids. However, strain SR 2-06 was distinguished from using a combination of physiological and biochemical properties. The cellular polar lipids were phosphatidylethanolamine, unknown aminophospholipids, unknown aminolipids, an unknown phospholipid and unidentified polar lipids. The DNA G+C content was 46.0 mol%. The phenotypic and phylogenetic evidence clearly indicates that strain SR 2-06 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is SR 2-06 ( = KCTC 42060 = JCM 19844).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000661
2015-12-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/12/4863.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000661&mimeType=html&fmt=ahah

References

  1. Collins M. D., Shah H. N., Minnikin D. E.. ( 1980;). A note on the separation of natural mixtures of bacterial menaquinones using reverse phase thin-layer chromatography. J Appl Bacteriol 48: 277–282 [CrossRef] [PubMed].
    [Google Scholar]
  2. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  3. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  4. Gonzalez J. M., Saiz-Jimenez C.. ( 2002;). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4: 770–773 [CrossRef] [PubMed].
    [Google Scholar]
  5. Jeon Y.-S., Lee K., Park S.-C., Kim B.-S., Cho Y.-J., Ha S.-M., Chun J.. ( 2014;). EzEditor: a versatile sequence alignment editor for both rRNA- and protein-coding genes. Int J Syst Evol Microbiol 64: 689–691 [CrossRef] [PubMed].
    [Google Scholar]
  6. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecules. . In Mammaliam Protein Metabolismvol. 3, pp. 21–213. Edited by Munro H. N.. [CrossRef] Academic Press;.
    [Google Scholar]
  7. Kim O.-S., Cho Y.-J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  8. Kim M., Oh H. S., Park S. C., Chun J.. ( 2014a;). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64: 346–351 [CrossRef] [PubMed].
    [Google Scholar]
  9. Kim T. S., Han J. H., Joung Y., Kim S. B.. ( 2014b;). Conyzicola lurida gen. nov., sp. nov., isolated from the root of Conyza canadensis. Int J Syst Evol Microbiol 64: 2753–2757 [CrossRef] [PubMed].
    [Google Scholar]
  10. Li L., Sun L., Shi N., Liu L., Guo H., Xu A., Zhang X., Yao N.. ( 2013;). Chitinophaga cymbidii sp. nov., isolated from Cymbidium goeringii roots. Int J Syst Evol Microbiol 63: 1800–1804 [CrossRef] [PubMed].
    [Google Scholar]
  11. Proença D. N., Nobre M. F., Morais P. V.. ( 2014;). Chitinophaga costaii sp. nov., an endophyte of Pinus pinaster, and emended description of Chitinophaga niabensis. Int J Syst Evol Microbiol 64: 1237–1243 [CrossRef] [PubMed].
    [Google Scholar]
  12. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  13. Shiratori H., Tagami Y., Morishita T., Kamihara Y., Beppu T., Ueda K.. ( 2009;). Filimonas lacunae gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from fresh water. Int J Syst Evol Microbiol 59: 1137–1142 [CrossRef] [PubMed].
    [Google Scholar]
  14. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  15. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P.A.D., Kandler O., Krichevsky M. I., Moore L. H., Moore W.E.C., Murray R.G.E., other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  16. Zhang L., Wang Y., Wei L., Wang Y., Shen X., Li S.. ( 2013;). Taibaiella smilacinae gen. nov., sp. nov., an endophytic member of the family Chitinophagaceae isolated from the stem of Smilacina japonica, and emended description of Flavihumibacter petaseus. Int J Syst Evol Microbiol 63: 3769–3776 [CrossRef] [PubMed].
    [Google Scholar]
  17. Zhao R., Chen X. Y., Li X. D., Tian Y., Kong B. H., Chen Z. L., Li Y. H.. ( 2014;). Cnuella takakiae gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from Takakia lepidozioides. Int J Syst Evol Microbiol 64: 607–612 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000661
Loading
/content/journal/ijsem/10.1099/ijsem.0.000661
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error