1887

Abstract

Culture-based study of the faecal microbiome in two adult female subjects revealed the presence of two obligately anaerobic, non-spore-forming, rod-shaped, non-motile, Gram-negative bacterial strains that represent novel species. The first strain, designated 627, was a fastidious, slow-growing, indole-positive bacterium with a non-fermentative type of metabolism. The strain was characterized by the production of acetic and succinic acids as metabolic end products, the prevalence of iso-C fatty acid and the presence of menaquinones MK-10 and MK-11. The DNA G+C content was found to be 56.6 mol%. The second strain, designated 177, was capable of fermenting a rich collection of carbohydrate substrates, producing acetic acid as a terminal product. The strain was indole-negative and resistant to bile. The major cellular fatty acids were iso-C and anteiso-C (in a 1 : 1 ratio) and the predominant menaquinone was MK-11. The DNA G+C content was 37.8 mol%. A phylogenomic analysis of the draft genomes of strains 627 and 177 placed these bacteria in the genera (family ) and (family ), respectively.

On the basis of the phenotypic and genotypic properties of strains 627 and 177, we conclude that these strains from human faeces represent two novel bacterial species, for which the names sp. nov. (type strain 627 = DSM 28863 = VKM B-2859) and sp. nov. (type strain 177 = DSM 28864 = VKM B-2857) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000617
2015-12-01
2019-09-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/12/4580.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000617&mimeType=html&fmt=ahah

References

  1. Angiuoli S. V., Gussman A., Klimke W., Cochrane G., Field D., Garrity G., Kodira C. D., Kyrpides N., Madupu R., other authors. ( 2008;). Toward an online repository of standard operating procedures (SOPs) for (meta)genomic annotation. OMICS 12: 137–141 [CrossRef] [PubMed].
    [Google Scholar]
  2. Arumugam M., Raes J., Pelletier E., Le Paslier D., Yamada T., Mende D. R., Fernandes G. R., Tap J., Bruls T., other authors. ( 2011;). Enterotypes of the human gut microbiome. Nature 473: 174–180 [CrossRef] [PubMed].
    [Google Scholar]
  3. Baughn A. D., Malamy M. H.. ( 2004;). The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature 427: 441–444 [CrossRef] [PubMed].
    [Google Scholar]
  4. Bonnet R., Suau A., Doré J., Gibson G. R., Collins M. D.. ( 2002;). Differences in rDNA libraries of faecal bacteria derived from 10- and 25-cycle PCRs. Int J Syst Evol Microbiol 52: 757–763 [PubMed].
    [Google Scholar]
  5. Borisov V. B., Gennis R. B., Hemp J., Verkhovsky M. I.. ( 2011;). The cytochrome bd respiratory oxygen reductases. Biochim Biophys Acta 1807: 1398–1413 [CrossRef] [PubMed].
    [Google Scholar]
  6. Chaplin A. V., Efimov B. A., Khokhlova E. V., Kafarskaia L. I., Tupikin A. E., Kabilov M. R., Shkoporov A. N.. ( 2014;). Draft genome sequence of Coprobacter fastidiosus NSB1T. Genome Announc 2: e00122–e00e14 [CrossRef] [PubMed].
    [Google Scholar]
  7. Collins M. D.. ( 1985;). Analysis of isoprenoid quinones. Methods Microbiol 18: 329–366 [CrossRef].
    [Google Scholar]
  8. Edgar R. C.. ( 2004;). muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797 [CrossRef] [PubMed].
    [Google Scholar]
  9. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  10. Ferrer M., Ruiz A., Lanza F., Haange S. B., Oberbach A., Till H., Bargiela R., Campoy C., Segura M. T., other authors. ( 2013;). Microbiota from the distal guts of lean and obese adolescents exhibit partial functional redundancy besides clear differences in community structure. Environ Microbiol 15: 211–226 [CrossRef] [PubMed].
    [Google Scholar]
  11. Hardham J. M., King K. W., Dreier K., Wong J., Strietzel C., Eversole R. R., Sfintescu C., Evans R. T.. ( 2008;). Transfer of Bacteroides splanchnicus to Odoribacter gen. nov. as Odoribacter splanchnicus comb. nov., and description of Odoribacter denticanis sp. nov., isolated from the crevicular spaces of canine periodontitis patients. Int J Syst Evol Microbiol 58: 103–109 [CrossRef] [PubMed].
    [Google Scholar]
  12. Hornsey M., Ellington M. J., Doumith M., Thomas C. P., Gordon N. C., Wareham D. W., Quinn J., Lolans K., Livermore D. M., Woodford N.. ( 2010;). AdeABC-mediated efflux and tigecycline MICs for epidemic clones of Acinetobacter baumannii. J Antimicrob Chemother 65: 1589–1593 [CrossRef] [PubMed].
    [Google Scholar]
  13. Hugon P., Ramasamy D., Lagier J. C., Rivet R., Couderc C., Raoult D., Fournier P. E.. ( 2013;). Non contiguous-finished genome sequence and description of Alistipes obesi sp. nov. Stand Genomic Sci 7: 427–439 [CrossRef] [PubMed].
    [Google Scholar]
  14. Jones D. T., Taylor W. R., Thornton J. M.. ( 1992;). The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8: 275–282 [PubMed].
    [Google Scholar]
  15. Kim M., Oh H. S., Park S. C., Chun J.. ( 2014;). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64: 346–351 [CrossRef] [PubMed].
    [Google Scholar]
  16. Konstantinidis K. T., Ramette A., Tiedje J. M.. ( 2006;). Toward a more robust assessment of intraspecies diversity, using fewer genetic markers. Appl Environ Microbiol 72: 7286–7293 [CrossRef] [PubMed].
    [Google Scholar]
  17. Kulagina E. V., Efimov B. A., Maximov P. Y., Kafarskaia L. I., Chaplin A. V., Shkoporov A. N.. ( 2012;). Species composition of Bacteroidales order bacteria in the feces of healthy people of various ages. Biosci Biotechnol Biochem 76: 169–171 [CrossRef] [PubMed].
    [Google Scholar]
  18. Lagier J. C., Million M., Hugon P., Armougom F., Raoult D.. ( 2012a;). Human gut microbiota: repertoire and variations. Front Cell Infect Microbiol 2: 136 [CrossRef] [PubMed].
    [Google Scholar]
  19. Lagier J. C., Armougom F., Mishra A. K., Nguyen T. T., Raoult D., Fournier P. E.. ( 2012b;). Non-contiguous finished genome sequence and description of Alistipes timonensis sp. nov. Stand Genomic Sci 6: 315–324 [CrossRef] [PubMed].
    [Google Scholar]
  20. Manichanh C., Rigottier-Gois L., Bonnaud E., Gloux K., Pelletier E., Frangeul L., Nalin R., Jarrin C., Chardon P., other authors. ( 2006;). Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut 55: 205–211 [CrossRef] [PubMed].
    [Google Scholar]
  21. Mishra A. K., Gimenez G., Lagier J. C., Robert C., Raoult D., Fournier P. E.. ( 2012;). Genome sequence and description of Alistipes senegalensis sp. nov. Stand Genomic Sci 6: 1–16 [CrossRef] [PubMed].
    [Google Scholar]
  22. Moriya Y., Itoh M., Okuda S., Yoshizawa A. C., Kanehisa M.. ( 2007;). kaas: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35: W182–W185 [CrossRef] [PubMed].
    [Google Scholar]
  23. Morotomi M., Nagai F., Sakon H., Tanaka R.. ( 2008;). Dialister succinatiphilus sp. nov. and Barnesiella intestinihominis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 58: 2716–2720 [CrossRef] [PubMed].
    [Google Scholar]
  24. Nagai F., Morotomi M., Watanabe Y., Sakon H., Tanaka R.. ( 2010;). Alistipes indistinctus sp. nov. and Odoribacter laneus sp. nov., common members of the human intestinal microbiota isolated from faeces. Int J Syst Evol Microbiol 60: 1296–1302 [CrossRef] [PubMed].
    [Google Scholar]
  25. Pfleiderer A., Mishra A. K., Lagier J. C., Robert C., Caputo A., Raoult D., Fournier P. E.. ( 2014;). Non-contiguous finished genome sequence and description of Alistipes ihumii sp. nov. Stand Genomic Sci 9: 1221–1235 [CrossRef] [PubMed].
    [Google Scholar]
  26. Price M. N., Dehal P. S., Arkin A. P.. ( 2010;). FastTree 2 - approximately maximum-likelihood trees for large alignments. PLoS One 5: e9490 [CrossRef] [PubMed].
    [Google Scholar]
  27. Rajilić-Stojanović M., de Vos W. M.. ( 2014;). The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev 38: 996–1047 [CrossRef] [PubMed].
    [Google Scholar]
  28. Rautio M., Eerola E., Väisänen-Tunkelrott M. L., Molitoris D., Lawson P., Collins M. D., Jousimies-Somer H.. ( 2003;). Reclassification of Bacteroides putredinis (Weinberg et al., 1937) in a new genus Alistipes gen. nov., as Alistipes putredinis comb. nov., and description of Alistipes finegoldii sp. nov., from human sources. Syst Appl Microbiol 26: 182–188 [CrossRef] [PubMed].
    [Google Scholar]
  29. Richter M., Rosselló-Móra R.. ( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106: 19126–19131 [CrossRef] [PubMed].
    [Google Scholar]
  30. Sakamoto M., Benno Y.. ( 2006;). Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis gen. nov., comb. nov., Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov. Int J Syst Evol Microbiol 56: 1599–1605 [CrossRef] [PubMed].
    [Google Scholar]
  31. Sakamoto M., Lan P. T., Benno Y.. ( 2007;). Barnesiella viscericola gen. nov., sp. nov., a novel member of the family Porphyro-monadaceae isolated from chicken caecum. Int J Syst Evol Microbiol 57: 342–346 [CrossRef] [PubMed].
    [Google Scholar]
  32. Segata N., Börnigen D., Morgan X. C., Huttenhower C.. ( 2013;). PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun 4: 2304 [CrossRef] [PubMed].
    [Google Scholar]
  33. Shcherbakova V. A., Chuvilskaya N. A., Rivkina E. M., Pecheritsyna S. A., Laurinavichius K. S., Suzina N. E., Osipov G. A., Lysenko A. M., Gilichinsky D. A., Akimenko V. K.. ( 2005;). Novel psychrophilic anaerobic spore-forming bacterium from the overcooled water brine in permafrost: description Clostridium algoriphilum sp. nov. Extremophiles 9: 239–246 [CrossRef] [PubMed].
    [Google Scholar]
  34. Shkoporov A. N., Khokhlova E. V., Chaplin A. V., Kafarskaia L. I., Nikolin A. A., Polyakov V. Y., Shcherbakova V. A., Chernaia Z. A., Efimov B. A.. ( 2013;). Coprobacter fastidiosus gen. nov., sp. nov., a novel member of the family Porphyro-monadaceae isolated from infant faeces. Int J Syst Evol Microbiol 63: 4181–4188 [CrossRef] [PubMed].
    [Google Scholar]
  35. Sjöberg F., Nowrouzian F., Rangel I., Hannoun C., Moore E., Adlerberth I., Wold A. E.. ( 2013;). Comparison between terminal-restriction fragment length polymorphism (T-RFLP) and quantitative culture for analysis of infants' gut microbiota. J Microbiol Methods 94: 37–46 [CrossRef] [PubMed].
    [Google Scholar]
  36. Song Y., Könönen E., Rautio M., Liu C., Bryk A., Eerola E., Finegold S. M.. ( 2006;). Alistipes onderdonkii sp. nov. and Alistipes shahii sp. nov., of human origin. Int J Syst Evol Microbiol 56: 1985–1990 [CrossRef] [PubMed].
    [Google Scholar]
  37. Tamura K., Nei M.. ( 1993;). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10: 512–526 [PubMed].
    [Google Scholar]
  38. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  39. Turnbaugh P. J., Hamady M., Yatsunenko T., Cantarel B. L., Duncan A., Ley R. E., Sogin M. L., Jones W. J., Roe B. A., other authors. ( 2009;). A core gut microbiome in obese and lean twins. Nature 457: 480–484 [CrossRef] [PubMed].
    [Google Scholar]
  40. Venter H., Mowla R., Ohene-Agyei T., Ma S.. ( 2015;). RND-type drug efflux pumps from Gram-negative bacteria: molecular mechanism and inhibition. Front Microbiol 6: 377 [CrossRef] [PubMed].
    [Google Scholar]
  41. Walker A. W., Sanderson J. D., Churcher C., Parkes G. C., Hudspith B. N., Rayment N., Brostoff J., Parkhill J., Dougan G., Petrovska L.. ( 2011;). High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol 11: 7 [CrossRef] [PubMed].
    [Google Scholar]
  42. Weinberg M., Nativelle R., Prevot A. R.. ( 1937;). Les Microbes Anaérobies Paris: (in French) Masson et Cie;.
    [Google Scholar]
  43. Zhilina T. N., Zavarzina D. G., Panteleeva A. N., Osipov G. A., Kostrikina N. A., Tourova T. P., Zavarzin G. A.. ( 2012;). Fuchsiella alkaliacetigena gen. nov., sp. nov., an alkaliphilic, lithoautotrophic homoacetogen from a soda lake. Int J Syst Evol Microbiol 62: 1666–1673 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000617
Loading
/content/journal/ijsem/10.1099/ijsem.0.000617
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error