- Volume 65, Issue Pt_10, 2015
Volume 65, Issue Pt_10, 2015
- NEW TAXA
-
- Firmicutes and related organisms
-
-
Domibacillus tundrae sp. nov., isolated from active layer soil of tussock tundra in Alaska, and emended description of the genus Domibacillus
A novel Gram-stain-positive, spore-forming, aerobic, motile and rod-shaped bacterium designated strain PAMC 80007T was isolated from an active layer soil sample of Council, Alaska. Optimal growth of strain PAMC 80007T was observed at 30 °C, pH 7.0 and in the presence of 2 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain PAMC 80007T belonged to the genus Domibacillus. This strain was closely related to Domibacillus enclensis (98.3 %), Domibacillus robiginosus (98.3 %) and Domibacillus indicus (97.2 %). Genomic DNA G+C content was 43.5 mol% and genomic relatedness analyses based on the average nucleotide identity and the genome-to-genome distance showed that strain PAMC 80007T is clearly distinguished from the closely related species of the genus Domibacillus. The major fatty acids (>5 %) were iso-C15 : 0 (24.7 %), C16 : 1ω11c (16.8 %), anteiso-C15 : 0 (16.5 %), C16 : 0 (15.6 %) and anteiso-C17 : 0 (8.7 %). The major respiratory isoprenoid quinones were menaquinone-6 (MK-6) and menaquinone-7 (MK-7), and the polar lipid profile contained diphosphatidylglycerol, phosphatidylglycerol, phosphoglycolipid, phospholipid and two unidentified lipids. meso-Diaminopimelic acid (type A1γ) was present in the cell-wall peptidoglycan, and the major whole-cell sugar was ribose with a minor quantity of glucose. Results from a polyphasic study suggested that strain PAMC 80007T represents a novel species of the genus Domibacillus for which the name Domibacillus tundrae sp. nov. is proposed. The type strain is PAMC 80007T ( = JCM 30371T = KCTC 33549T = DSM 29572T). An emended description of the genus Domibacillus is also provided.
-
-
-
Bacillus paralicheniformis sp. nov., isolated from fermented soybean paste
More LessAn isolate of a Gram-stain-positive, facultatively anaerobic, motile, rod-shaped, endospore-forming bacterium was recovered from soybean-based fermented paste. Phylogenetic analysis of the 16S rRNA gene indicated that the strain was most closely related to Bacillus sonorensis KCTC-13918T (99.5 % similarity) and Bacillus licheniformis DSM 13T (99.4 %). In phenotypic characterization, the novel strain was found to grow at 15–60 °C and to tolerate up to 10 % (w/v) NaCl. Furthermore, the strain grew in media with pH 6–11 (optimal growth at pH 7.0–8.0). The predominant cellular fatty acids were anteiso-C15 : 0 (37.7 %) and iso-C15 : 0 (31.5 %). The predominant isoprenoid quinone was menaquinone 7 (MK-7). The cell-wall peptidoglycan contained meso-diaminopimelic acid. A draft genome sequence of the strain was completed and used for phylogenetic analysis. Phylogenomic analysis of all published genomes of species in the B. licheniformis group revealed that strains belonging to B. licheniformis clustered into two distinct groups, with group 1 consisting of B. licheniformis DSM 13T and 11 other strains and group 2 consisting of KJ-16T and four other strains. The DNA G+C content of strain KJ-16T was 45.9 % (determined from the genome sequence). Strain KJ-16T and another strain from group 2 were subsequently characterized using a polyphasic taxonomic approach and compared with strains from group 1 and another closely related species of the genus Bacillus. Based upon the consensus of phylogenetic and phenotypic analyses, we conclude that this strain represents a novel species within the genus Bacillus, for which the name Bacillus paralicheniformis sp. nov. is proposed, with type strain KJ-16T ( = KACC 18426T = NRRL B-65293T).
-
-
-
Fusibacter fontis sp. nov., a sulfur-reducing, anaerobic bacterium isolated from a mesothermic Tunisian spring
Strain KhalAKB1T, a mesophilic, anaerobic, rod-shaped bacterium, was isolated from water collected from a mesothermic Tunisian spring. Cells were Gram-staining-positive rods, occurring singly or in pairs and motile by one lateral flagellum. Strain KhalAKB1T grew at 15–45 °C (optimum 30 °C), at pH 5.5–8.5 (optimum pH 7.0) and in the presence of 0–35 g NaCl l− 1 (optimum 1 g NaCl l− 1). It fermented yeast extract and a wide range of carbohydrates including cellobiose, d-glucose, d-ribose, sucrose, d-xylose, maltose, d-galactose and starch as electron donors. Acetate, ethanol, CO2 and H2 were end products of glucose metabolism. It reduced elemental sulfur, but not sulfate, thiosulfate or sulfite, into sulfide. The DNA G+C content was 37.6 mol%. The predominant cellular fatty acids were C14 : 0 and C16 : 0. Phylogenetic analysis of the 16S rRNA gene sequence suggested Fusibacter bizertensis as the closest relative of this isolate (identity of 97.2 % to the type strain). Based on phenotypic, phylogenetic and genotypic taxonomic characteristics, strain KhalAKB1T is proposed to be assigned to a novel species within the genus Fusibacter, order Clostridiales, Fusibacter fontis sp. nov. The type strain is KhalAKB1T ( = DSM 28450T = JCM 19912T).
-
-
-
Phylogenomic analysis shows that ‘Bacillus vanillea’ is a later heterotypic synonym of Bacillus siamensis
More Less‘Bacillus vanillea’ XY18 ( = CGMCC 8629 = NCCB 100507) was isolated from cured vanilla beans and involved in the formation of vanilla aroma compounds. A draft genome of this strain was assembled and yielded a length of 3.71 Mbp with a DNA G+C content of 46.3 mol%. Comparative genomic analysis with its nearest relatives showed only minor differences between this strain and the genome of the Bacillus siamensis KCTC 13613T ( = BCC 22614T = KACC 16244T), with a calculated DNA–DNA hybridization (DDH) value of 91.2 % and an average nucleotide identity (ANI) of 98.9 %. This DDH value is well above the recommended 70 % threshold for species delineation, as well as the ANI threshold of 95 %. In addition, the results of morphological, physiological, chemotaxonomic and phylogenetic analyses indicate that the type strains of these two taxa are highly similar with phenotype coherence. A core genome multi-locus sequencing analysis was conducted for the strains and the results show that ‘Bacillus vanillea’ XY18 clusters closely to the type strain of Bacillus siamensis. Therefore, it is proposed that the species ‘Bacillus vanillea’ XY18 ( = CGMCC 8629 = NCCB 100507) should be reclassified as a later heterotypic synonym of Bacillus siamensis KCTC 13613T ( = BCC 22614T = KACC 16244T). An emended description of Bacillus siamensis is provided.
-
-
-
Terrisporobacter petrolearius sp. nov., isolated from an oilfield petroleum reservoir
A Gram-staining-positive, spore-forming, strictly anaerobic bacterium, designated strain LAM0A37T, was isolated from enrichment samples collected from a petroleum reservoir in Shengli oilfield. Cells of strain LAM0A37T were rod-shaped and motile by peritrichous flagella. The optimal temperature and pH for growth were 40 °C and 7.0–7.5, respectively. The strain did not require NaCl for growth but tolerated up to 3 % (w/v) NaCl. Strain LAM0A37T was able to utilize glucose, fructose, maltose, xylose, sorbitol, cellobiose, melibiose and melezitose as sole carbon sources. Sulfite was used as an electron acceptor. The main products of glucose fermentation were acetate and CO2. The predominant fatty acid was C16 : 0 (23.6 %). The main polar lipid profile comprised of five glycolipids, six phospholipids and two lipids. No menaquinone was detected. The genomic DNA G+C content was 27.1 ± 0.2 mol% as determined by the T m method. Analysis of the 16S rRNA gene sequence indicated that the isolate was a member of the genus Terrisporobacter, and was most closely related to Terrisporobacter glycolicus JCM 1401T and Terrisporobacter mayombei DSM 6539T with 98.3 % 16S rRNA gene sequence similarity to both. DNA–DNA hybridization values between strain LAM0A37T and type strains of Terrisporobacter glycolicus and Terrisporobacter mayombei were 45.6 ± 0.3 % and 38.3 ± 0.4 %, respectively. Based on phenotypic, phylogenetic and chemotaxonomic characteristics, strain LAM0A37T is suggested to represent a novel species of the genus Terrisporobacter, for which the name Terrisporobacter petrolearius sp. nov. is proposed. The type strain is LAM0A37T ( = ACCC 00740T = JCM 19845T).
-
-
-
Bacillus glycinifermentans sp. nov., isolated from fermented soybean paste
More LessTwo independent isolates of a Gram-stain-positive, facultatively anaerobic, motile, rod-shaped bacterium were recovered from cheonggukjang, a Korean fermented soybean paste food product. Preliminary sequencing analysis of the 16S rRNA gene indicated that these strains were related most closely to Bacillus sonorensis KCTC-13918T and Bacillus licheniformis DSM 13T. In phenotypic characterization, the novel strains were found to grow between 15 and 55 °C and to tolerate up to 8 % (w/v) NaCl. Furthermore, the strains grew in media of pH 5–10 (optimal growth at pH 7.0). The predominant cellular fatty acids were anteiso-C15 : 0 and iso-C15 : 0.The isoprenoid quinone was menaquinone 7 (MK-7). The cell-wall peptidoglycan contained meso-diaminopimelic acid. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unknown glycolipid. Draft genomes of the two strains were determined and in silico DNA–DNA hybridizations with their nearest neighbour (B. sonorensis KCTC-13918T) revealed 29.9 % relatedness for both strains. Phylogenomic analysis of the genomes was conducted with the core genome (799 genes) of all strains in the Bacillus subtilis group and the two strains formed a distinct monophyletic cluster. In addition, the strains differed from the two most closely related species in that they did not metabolize maltose, d-galactose, d-sorbitol or d-gluconic acid. The DNA G+C content was 45.9 mol%. Based upon the consensus of phylogenetic and phenotypic analyses, these strains represent a novel species of the genus Bacillus, for which the name Bacillus glycinifermentans sp. nov. is proposed. The type strain is GO-13T ( = KACC 18425T = NRRL B-65291T).
-
-
-
Baia soyae gen. nov., sp. nov., a mesophilic representative of the family Thermoactinomycetaceae, isolated from soybean root [Glycine max (L.) Merr]
A mesophilic, endophytic, filamentous bacterium, designated strain NEAU-gxj18T, was isolated from soybean root [Glycine max (L.) Merr.] collected from Harbin, Heilongjiang Province, China and characterized using a polyphasic approach. Growth was observed at 20–40 °C (optimum 37 °C). Aerial mycelium was absent on all the media tested. Substrate mycelia were well-developed and formed abundant single endospores with smooth surfaces. The only menaquinone was MK-7.The diagnostic diamino acid was meso-diaminopimelic acid. The whole-cell sugars were ribose, glucose and galactose. The major fatty acids were iso-C15 : 0, C13 : 0 and iso-C17 : 0. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylethanolamine, phosphatidylglycerol, one unidentified aminophospholipid and one undientified phospholipid. The DNA G+C content was 49.9 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NEAU-gxj18T was phylogenetically related to members of the family Thermoactinomycetaceae, with the highest sequence similarity to Geothermomicrobium terrae YIM 77562T (93.35 %). On the basis of morphological and chemotaxonomic characteristics, phylogenetic analysis and characteristic patterns of 16S rRNA gene signature nucleotides, strain NEAU-gxj18T represents a novel species of a new genus within the family Thermoactinomycetaceae, for which the name Baia soyae gen. nov., sp. nov. is proposed. The type strain of the type species is NEAU-gxj18T ( = CGMCC 4.7223T = DSM 46831T).
-
- Proteobacteria
-
-
Bradyrhizobium subterraneum sp. nov., a symbiotic nitrogen-fixing bacterium from root nodules of groundnuts
More LessSeven strains of symbiotic bacteria from root nodules of local races of Bambara groundnut (Vigna subterranea) and peanuts (Arachis hypogaea) grown on subsistence farmers' fields in the Kavango region, Namibia, were previously characterized and identified as a novel group within the genus Bradyrhizobium. To corroborate their taxonomic status, these strains were further characterized using a polyphasic approach. All strains possessed identical 16S rRNA gene sequences with Bradyrhizobium yuanmingense CCBAU 10071T being the most closely related type strain in the 16S rRNA gene phylogenetic analysis, and Bradyrhizobium daqingense CCBAU 15774T in the ITS sequence analysis. Phylogenetic analysis of concatenated glnII-recA-rpoB-dnaK placed the strains in a highly supported lineage distinct from named species of the genus Bradyrhizobium, most closely related to Bradyrhizobium yuanmingense CCBAU 10071T. The species status was validated by results of DNA–DNA hybridization. Phylogenetic analysis of nifH genes placed the novel strains in a group with nifH of ‘Bradyrhizobium arachidis’ CCBAU 051107 that also nodulates peanuts. The combination of phenotypic characteristics from several tests including carbon source utilization and antibiotic resistance could be used to differentiate representative strains from recognized species of the genus Bradyrhizobium. Novel strain 58 2-1T induced effective nodules on V. subterranea, Vigna unguiculata and A. hypogaea, and some strains on Lablab purpureus. Based on the data presented, we conclude that our strains represent a novel species for which the name Bradyrhizobium subterraneum sp. nov. is proposed, with 58 2-1T [ = DSM 100298T = LMG 28792T = NTCCM0016T (Windhoek)] as the type strain. The DNA G+C content of strain 58 2-1T was 64.7 mol% (T m).
-
-
-
Tamilnaduibacter salinus gen. nov., sp. nov., a halotolerant gammaproteobacterium within the family Alteromonadaceae, isolated from a salt pan in Tamilnadu, India
More LessTwo novel Gram-stain-negative, slow-growing, halotolerant strains with rod-shaped cells, designated as strains Mi-7T and Mi-8, which formed pin-point colonies on halophilic media were isolated during a study into the microbial diversity of a salt pan in the state of Tamilnadu, India. Both the strains had an obligate requirement for 1 % (w/v) NaCl for growth and were halotolerant, growing at NaCl concentrations of up to 20 % (w/v) in media. The strains, however, showed an inability to utilize the majority of substrates tested as sole carbon sources for growth and in fermentation reactions. Molecular phylogenetic analyses, based on 16S rRNA gene sequence revealed their closest phylogenetic neighbours to be members of the genus Marinobacter, with whom they showed the highest sequence similarity of 93.6 % and even less with the type strain of the type species, Marinobacter hydrocarbonoclasticus DSM 8798T (91.1 %). Similarities with other genera within the family Alteromonadaceae were below 91.0 %. However, the two strains were very closely related to each other with 99.9 % sequence similarity, and DNA–DNA hybridization analyses confirmed their placement in the same species. The DNA G+C content of both strains was 65 mol%. Using the polyphasic taxonomic data obtained from this study, strains Mi-7T and Mi-8 represent two strains of the same species of a novel genus for which the name Tamilnaduibacter salinus gen. nov., sp. nov., is proposed; the type strain of the novel species is Mi-7T ( = MTCC 12009T = DSM 28688T).
-
-
-
Algimonas arctica sp. nov., isolated from intertidal sand, and emended description of the genus Algimonas
A novel Gram-reaction-negative, aerobic, pale-orange-pigmented bacterium, designated strain SM1216T, was isolated from Arctic intertidal sand. Cells of strain SM1216T were dimorphic rods with a single polar prostheca or flagellum. The strain grew at 4 − 30 °C (optimum at 25 °C) and with 0.5 − 6 % (w/v) NaCl (optimum with 2 − 3 %). It reduced nitrate to nitrite but did not hydrolyse gelatin, DNA or Tween 80. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain SM1216T was affiliated with the genus Algimonas in the family Hyphomonadaceae, sharing 97.5 and 96.3 % similarity with Algimonas ampicilliniresistens 14A-2-7T and Algimonas porphyrae 0C-2-2T, respectively, the two known species in the genus Algimonas. However, the level of DNA–DNA relatedness between strain SM1216T and the type strain of A. ampicilliniresistens, the nearest phylogenetic neighbour, was 57.9 %. The major cellular fatty acids of strain SM1216T were C18 : 1ω7c and C18 : 1 2-OH. The main polar lipids of strain SM1216T were monoglycosyldiglyceride (MGDG), glucuronopyranosyldiglyceride (GUDG), phosphatidylglycerol (PG) and three unidentified phospholipids (PL1–3). The major respiratory quinone was ubiquinone 10 (Q10). The genomic G+C content of strain SM1216T was 60.6 mol%. On the basis of the evidence from this polyphasic study, strain SM1216T represents a novel species in the genus Algimonas, for which the name Algimonas arctica sp. nov. is proposed. The type strain is SM1216T ( = MCCC 1K00233T = KCTC 32513T). An emended description of the genus Algimonas is also given.
-
-
-
Aestuariivita atlantica sp. nov., isolated from deep-sea sediment
More LessA novel strain, 22II-S11-z3T, was isolated from the deep-sea sediment of the Atlantic Ocean. The bacterium was aerobic, Gram-staining-negative, oxidase-positive and catalase-negative, oval- to rod-shaped, and non-motile. Growth was observed at salinities of 1–9 % NaCl and temperatures of 10–45 °C. The isolate could hydrolyse aesculin and Tweens 20, 40 and 80, but not gelatin. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 22II-S11-z3T belonged to the genus Aestuariivita, with highest sequence similarity to Aestuariivita boseongensis KCTC 42052T (97.5 %). The average nucleotide identity and digital DNA–DNA hybridization values between strain 22II-S11-z3T and A. boseongensis KCTC 42052T were 71.5 % and 20.0 ± 2.3 %, respectively. The G+C content of the chromosomal DNA was 65.5 mol%. The principal fatty acids (>5 %) were summed feature 8 (C18 : 1ω7c/ω6c) (35.2 %), C19 : 0 cyclo ω8c (20.9 %), C16 : 0 (11.8 %), 11-methyl C18 : 1ω7c (11.4 %) and C12 : 1 3-OH (9.4 %). The respiratory quinone was determined to be Q-10. Diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, nine unidentified phospholipids, one unidentified aminolipid and two unidentified lipids were present. The combined genotypic and phenotypic data show that strain 22II-S11-z3T represents a novel species of the genus Aestuariivita, for which the name Aestuariivita atlantica sp. nov. is proposed, with the type strain 22II-S11-z3T ( = KCTC 42276T = MCCC 1A09432T).
-
-
-
Pantoea theicola sp. nov., isolated from black tea
More LessA Gram-negative, facultatively anaerobic strain was isolated from black tea. On the basis of 16S rRNA gene sequence similarity comparisons, strain QC88-366T was grouped into the genus Pantoea, being related most closely to the type strains of Pantoea gaviniae (98.5 %) and Pantoea calida (98.3 %); sequence similarities were ≤ 97.0 % to the type strains of other species of the genus Pantoea. Multilocus sequence analysis based on partial sequences of the gyrB, rpoB, infB and atpD genes also revealed P. gaviniae and P. calida as the closest phylogenetic relatives. The fatty acid profile showed the major fatty acids of strain QC88-366T were C16 : 0, C16 : 1 and C18 : 1, the same as those of its closest related species. However, the ratio of C16 : 1, C17 : 0 cyclo, C18 : 1 and C18 : 2 differed slightly compared with those of the related neighbours. In addition, the results of physiological and biochemical tests also allowed the phenotypic differentiation of strain QC88-366T from its closest phylogenetic neighbours. The G+C content of the DNA was 57.2 mol%. Strain QC88-366T therefore represents a novel species of the genus Pantoea, for which the name Pantoea theicola sp. nov. is proposed. The type strain is QC88-366T ( = DSM 29212T = NBRC 110557T).
-
-
-
Sphingomonas vulcanisoli sp. nov., isolated from soil of a lava forest
A Gram-stain-negative, non-motile, yellow-pigmented and rod-shaped bacterial strain, designated SN6-13T, was isolated from soil of the Gotjawal, lava forest, located in Jeju, Republic of Korea. Cells of strain SN6-13T were oxidase- and catalase-positive. The isolate contained Q-10 as the predominant isoprenoid quinone, summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and C16 : 0 as the major fatty acids, sym-homospermidine as the major polyamine and diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, sphingoglycolipid, ninhydrinphosphatidylglycerol and two unidentified aminophospholipids as the polar lipids. The DNA G+C content was 64.6 mol%. In phylogenetic analyses based on 16S rRNA gene sequencing, strain SN6-13T was most closely related to Sphingomonas laterariae LNB2T (95.4 % sequence similarity) and formed a separate lineage in the genus Sphingomonas. Based on phenotypic, chemotaxonomic and phylogenetic characteristics, it is concluded that strain SN6-13T represents a novel species of the genus Sphingomonas, for which the name Sphingomonas vulcanisoli sp. nov. is proposed. The type strain is SN6-13T ( = KCTC 42454T = CECT 8804T).
-
-
-
Corticibacter populi gen. nov., sp. nov., a new member of the family Comamonadaceae, from the bark of Populus euramericana
More LessThree novel endophytic strains, designated 17B10-2-12T, 26C10-4-4 and D13-10-4-9, were isolated from the bark of Populus euramericana in Heze, Shandong Province, China. They were Gram-reaction-negative, aerobic, non-motile, short-rod-shaped, oxidase-positive and catalase-negative. A phylogenetic analysis of the 16S rRNA gene showed that the three novel strains clustered with members of the family Comamonadaceae and formed a distinct branch. The isolates shared 100 % similarities among themselves and had the highest sequence similarity with Xenophilus azovorans DSM 13620T (95.2 %) and Xenophilus arseniciresistens YW8T (95.0 %), and less than 95.0 % sequence similarities with members of other species. Their major fatty acids were C16 : 0, C17 : 0 cyclo, C18 : 1ω7c and C16 : 1ω7c/C16 : 1ω6c. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and three unknown aminophospholipids. The predominant quinone was ubiquinone-8 (Q-8). The DNA G+C content was 69.5–70.0 mol%. Based on data from a polyphasic taxonomy study, the three strains represent a novel species of a novel genus of the family Comamonadaceae, for which the name Corticibacter populi gen. nov., sp. nov. is proposed. The type strain is 17B10-2-12T ( = CFCC 12099T = KCTC 42091T).
-
-
-
Description of Bartonella ancashensis sp. nov., isolated from the blood of two patients with verruga peruana
Three novel isolates of the genus Bartonella were recovered from the blood of two patients enrolled in a clinical trial for the treatment of chronic stage Bartonella bacilliformis infection (verruga peruana) in Caraz, Ancash, Peru. The isolates were initially characterized by sequencing a fragment of the gltA gene, and found to be disparate from B. bacilliformis. The isolates were further characterized using phenotypic and genotypic methods, and found to be genetically identical to each other for the genes assessed, but distinct from any known species of the genus Bartonella, including the closest relative B. bacilliformis. Other characteristics of the isolates, including their morphology, microscopic and biochemical properties, and growth patterns, were consistent with members of the genus Bartonella. Based on these results, we conclude that these three isolates are members of a novel species of the genus Bartonella for which we propose the name Bartonella ancashensis sp. nov. (type strain 20.00T = ATCC BAA-2694T = DSM 29364T).
-
-
-
Reclassification of Actinobacillus muris as Muribacter muris gen. nov., comb. nov.
More LessTo reinvestigate the taxonomy of [Actinobacillus] muris, 474 strains, mainly from mice and rats, were characterized by phenotype and 130 strains selected for genotypic characterization by 16S rRNA and partial rpoB gene sequencing. The type strain was further investigated by whole-genome sequencing. Phylogenetic analysis of the DNA sequences showed one monophyletic group with intragroup similarities of 96.7 and 97.2 % for the 16S rRNA and rpoB genes, respectively. The highest 16S rRNA gene sequence similarity to a taxon with a validly published name outside the group was 95.9 %, to the type strain of [Pasteurella] pneumotropica. The closest related taxon based on rpoB sequence comparison was ‘Haemophilus influenzae-murium’, with 88.4 % similarity. A new genus and a new combination, Muribacter muris gen. nov., comb. nov., are proposed based on a distinct phylogenetic position based on 16S rRNA and rpoB gene sequence comparisons, with major divergence from the existing genera of the family Pasteurellaceae. The new genus has the characteristics of [A.] muris with the emendation that acid formation from ( − )-d-mannitol and hydrolysis of aesculin are variable, while the α-glucosidase test is positive. There is no requirement for exogenously supplied NAD (V factor) for the majority of strains investigated; however, one strain was found to require NAD. The major fatty acids of the type strain of Muribacter muris were C14 : 0, C14 : 0 3-OH/iso-C16 : 1 I, C16 : 1ω7c and C16 : 0, which is in line with most genera of the Pasteurellaceae. The type strain of Muribacter muris is CCUG 16938T ( = NCTC 12432T = ATCC 49577T).
-
-
-
Pantoea intestinalis sp. nov., isolated from the human gut
A novel bacterial strain, 29Y89BT, was isolated from a faecal sample of a healthy human subject. Cells were Gram-stain-negative, motile, non-spore-forming and rod-shaped. Strain 29Y89BT formed cream-coloured colonies 2 mm in diameter on trypticase soy agar and showed optimum growth at 35 °C. Strain 29Y89BT showed highest 16S rRNA gene sequence similarity to Pantoea gaviniae A18/07T (98.4 %) followed by Pantoea calida 1400/07T (97.2 %). Multi-locus sequence analysis using atpD (ATP synthase β subunit), gyrB (DNA gyrase), infB (initiation translation factor 2) and rpoB (RNA polymerase β subunit) genes also supported the result of 16S rRNA gene sequence based phylogeny. Strain 29Y89BT showed 62 and 40.7 % DNA–DNA relatedness with P. calida DSM 22759T and P. gaviniae DSM 22758T. Strain 29Y89BT contained C17 : 0 cyclo, C19 : 0 cyclo ω8c, C16 : 0, C14 : 0 and C12 : 0 as predominant fatty acids. In addition, strain 29Y89BT showed physiological and phenotypic differences from its closest relatives P. gaviniae DSM 22758T and P. calida DSM 22759T. The polar lipid profile mainly comprised phospholipids. The DNA G+C content was 59.1 mol%. Thus, based on the findings of the current study, strain 29Y89BT showed clear delineations from its closest relatives P. gaviniae DSM 22758T and P. calida DSM 22759T, and is thus considered to represent a novel species of the genus Pantoea, for which the name Pantoea intestinalis sp. nov. is proposed. The type strain is 29Y89BT ( = DSM 28113T = MCC 2554T).
-
-
-
Haliea atlantica sp. nov., isolated from seawater, transfer of Haliea mediterranea to Parahaliea gen. nov. as Parahaliea mediterranea comb. nov. and emended description of the genus Haliea
A novel Gram-stain-negative, oxidase- and catalase-positive, aerobic bacterium, designated strain SM1351T, was isolated from surface seawater of the Atlantic Ocean. This strain grew at 4–45 °C and with 5–90 g NaCl l− 1. It did not reduce nitrate to nitrite and could not hydrolyse starch or DNA. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the strain was affiliated with the genus Haliea in the family Alteromonadaceae, with sequence similarities with the type strains of Haliea salexigens and Haliea mediterranea, the two recognized species of the genus Haliea, of 96.2 and 94.6 %, respectively. The major fatty acids of strain SM1351T were C16 : 1ω7c and/or iso-C15 : 0 2-OH, C17 : 1ω8c, C18 : 1ω7c and C16 : 0 and the major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The major respiratory quinone was ubiquinone Q-8. The genomic DNA G+C content of strain SM1351T was 62 mol%. On the basis of the polyphasic characterization of strain SM1351T in this study, it is considered to represent a novel species in the genus Haliea, for which the name Haliea atlantica sp. nov. is proposed. The type strain is SM1351T ( = CCTCC AB 2014266T = JCM 30304T). Moreover, the transfer of Haliea mediterranea Lucena et al. 2010 to Parahaliea gen. nov. as Parahaliea mediterranea comb. nov. (type strain 7SM29T = CECT 7447T = DSM 21924T) and an emended description of the genus Haliea are also proposed.
-
-
-
Mesorhizobium waimense sp. nov. isolated from Sophora longicarinata root nodules and Mesorhizobium cantuariense sp. nov. isolated from Sophora microphylla root nodules
More LessIn total 14 strains of Gram-stain-negative, rod-shaped bacteria were isolated from Sophora longicarinata and Sophora microphylla root nodules and authenticated as rhizobia on these hosts. Based on the 16S rRNA gene phylogeny, they were shown to belong to the genus Mesorhizobium, and the strains from S. longicarinata were most closely related to Mesorhizobium amorphae ACCC 19665T (99.8–99.9 %), Mesorhizobium huakuii IAM 14158T (99.8–99.9 %), Mesorhizobium loti USDA 3471T (99.5–99.9 %) and Mesorhizobium septentrionale SDW 014T (99.6–99.8 %), whilst the strains from S. microphylla were most closely related to Mesorhizobium ciceri UPM-Ca7T (99.8–99.9 %), Mesorhizobium qingshengii CCBAU 33460T (99.7 %) and Mesorhizobium shangrilense CCBAU 65327T (99.6 %). Additionally, these strains formed two distinct groups in phylogenetic trees of the housekeeping genes glnII, recA and rpoB. Chemotaxonomic data, including fatty acid profiles, supported the assignment of the strains to the genus Mesorhizobium and allowed differentiation from the closest neighbours. Results of DNA–DNA hybridizations, MALDI-TOF MS analysis, ERIC-PCR, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of our strains from their closest neighbouring species. Therefore, the strains isolated from S. longicarinata and S. microphylla represent two novel species for which the names Mesorhizobium waimense sp. nov. (ICMP 19557T = LMG 28228T = HAMBI 3608T) and Mesorhizobium cantuariense sp. nov. (ICMP 19515T = LMG 28225T = HAMBI 3604T), are proposed respectively.
-
-
-
Maritimibacter lacisalsi sp. nov., isolated from a salt lake, and emended description of the genus Maritimibacter Lee et al. 2007
More LessA Gram-staining-negative, non-motile, strictly aerobic bacterium, strain X12M-4T, was isolated from Xiaochaidan Lake, a salt lake (salinity 9.9 %, w/w) in Qaidam basin, Qinghai Province, China. Its taxonomic position was determined by using a polyphasic approach. Strain X12M-4T was catalase- and oxidase-positive. Cells were rod-shaped, 0.5–0.8 μm wide and 1.1–1.6 μm long. Growth was observed in the presence of 0–11.0 % (w/v) NaCl (optimum, 5.0–6.0 %) and at 15–40 °C (optimum, 25 °C) and pH 6.5–9.5 (optimum, pH 7.0). No growth occurred at 10 °C or 45 °C. Strain X12M-4T contained C18 : 1ω7c, C19 : 0 cyclo ω8c and C16 : 0 as the major fatty acids (>10.0 %). The predominant respiratory quinone was Q-10.The major polar lipids were phosphatidylcholine, phosphatidylglycerol, diphosphatidglycerol, an unknown aminolipid and an unidentified lipid. The DNA G+C content was 65.7 mol% (determined using T m). Strain X12M-4T showed highest 16S rRNA gene sequence similarities to Maritimibacter alkaliphilus HTCC2654T (96.7 %), Roseibacterium elongatum DSM 19469T (96.4 %), Tropicimonas aquimaris DPG-21T (95.6 %), ‘Roseibacterium beibuensis’ JLT1202r (95.6 %) and Tropicimonas sediminicola M97T (95.5 %) and < 95.5 % to others. Phylogenetic trees based on 16S rRNA gene sequences indicated that strain X12M-4T formed a robust cluster with M. alkaliphilus HTCC2654T. On the basis of the data, it is concluded that strain X12M-4T represents a novel species of the genus Maritimibacter, for which the name Maritimibacter lacisalsi sp. nov. is proposed. The type strain is X12M-4T ( = CGMCC 1.12922T = JCM 30555T). To accommodate the novel species, the description of the genus Maritimibacter was emended.
-
Volumes and issues
-
Volume 75 (2025)
-
Volume 74 (2024)
-
Volume 73 (2023)
-
Volume 72 (2022 - 2023)
-
Volume 71 (2020 - 2021)
-
Volume 70 (2020)
-
Volume 69 (2019)
-
Volume 68 (2018)
-
Volume 67 (2017)
-
Volume 66 (2016)
-
Volume 65 (2015)
-
Volume 64 (2014)
-
Volume 63 (2013)
-
Volume 62 (2012)
-
Volume 61 (2011)
-
Volume 60 (2010)
-
Volume 59 (2009)
-
Volume 58 (2008)
-
Volume 57 (2007)
-
Volume 56 (2006)
-
Volume 55 (2005)
-
Volume 54 (2004)
-
Volume 53 (2003)
-
Volume 52 (2002)
-
Volume 51 (2001)
-
Volume 50 (2000)
-
Volume 49 (1999)
-
Volume 48 (1998)
-
Volume 47 (1997)
-
Volume 46 (1996)
-
Volume 45 (1995)
-
Volume 44 (1994)
-
Volume 43 (1993)
-
Volume 42 (1992)
-
Volume 41 (1991)
-
Volume 40 (1990)
-
Volume 39 (1989)
-
Volume 38 (1988)
-
Volume 37 (1987)
-
Volume 36 (1986)
-
Volume 35 (1985)
-
Volume 34 (1984)
-
Volume 33 (1983)
-
Volume 32 (1982)
-
Volume 31 (1981)
-
Volume 30 (1980)
-
Volume 29 (1979)
-
Volume 28 (1978)
-
Volume 27 (1977)
-
Volume 26 (1976)
-
Volume 25 (1975)
-
Volume 24 (1974)
-
Volume 23 (1973)
-
Volume 22 (1972)
-
Volume 21 (1971)
-
Volume 20 (1970)
-
Volume 19 (1969)
-
Volume 18 (1968)
-
Volume 17 (1967)
-
Volume 16 (1966)
-
Volume 15 (1965)
-
Volume 14 (1964)
-
Volume 13 (1963)
-
Volume 12 (1962)
-
Volume 11 (1961)
-
Volume 10 (1960)
-
Volume 9 (1959)
-
Volume 8 (1958)
-
Volume 7 (1957)
-
Volume 6 (1956)
-
Volume 5 (1955)
-
Volume 4 (1954)
-
Volume 3 (1953)
-
Volume 2 (1952)
-
Volume 1 (1951)