1887

Abstract

An isolate of a Gram-stain-positive, facultatively anaerobic, motile, rod-shaped, endospore-forming bacterium was recovered from soybean-based fermented paste. Phylogenetic analysis of the 16S rRNA gene indicated that the strain was most closely related to KCTC-13918 (99.5 % similarity) and DSM 13 (99.4 %). In phenotypic characterization, the novel strain was found to grow at 15–60 °C and to tolerate up to 10 % (w/v) NaCl. Furthermore, the strain grew in media with pH 6–11 (optimal growth at pH 7.0–8.0). The predominant cellular fatty acids were anteiso-C (37.7 %) and iso-C (31.5 %). The predominant isoprenoid quinone was menaquinone 7 (MK-7). The cell-wall peptidoglycan contained -diaminopimelic acid. A draft genome sequence of the strain was completed and used for phylogenetic analysis. Phylogenomic analysis of all published genomes of species in the group revealed that strains belonging to clustered into two distinct groups, with group 1 consisting of DSM 13 and 11 other strains and group 2 consisting of KJ-16 and four other strains. The DNA G+C content of strain KJ-16 was 45.9 % (determined from the genome sequence). Strain KJ-16 and another strain from group 2 were subsequently characterized using a polyphasic taxonomic approach and compared with strains from group 1 and another closely related species of the genus . Based upon the consensus of phylogenetic and phenotypic analyses, we conclude that this strain represents a novel species within the genus , for which the name sp. nov. is proposed, with type strain KJ-16 ( = KACC 18426 = NRRL B-65293).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000441
2015-10-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/10/3487.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000441&mimeType=html&fmt=ahah

References

  1. Alvarez-Ordóñez A., Begley M., Clifford T., Deasy T., Considine K., O'Connor P., Paul Ross R., Hill C.. ( 2014;). Investigation of the antimicrobial activity of Bacillus licheniformis strains isolated from retail powdered infant milk formulae. Probiotics Antimicrob Proteins 6: 32–40 [CrossRef] [PubMed].
    [Google Scholar]
  2. Breznak J.A., Costilow R.N.. ( 1994;). Physicochemical factors in growth. . In Methods for General and Molecular Bacteriology, pp. 137–154. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  3. Cho M.J., Lee J.Y., Kim J.H.. ( 2014;). Microbial and physiochemical properties of Cheonggukjang fermented using Bacillus strains with antibacterial or antifungal activities. Food Sci Biotechnol 23: 1525–1532 [CrossRef].
    [Google Scholar]
  4. De Vos P., Garrity G., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K. H., Whitman W. B.. (editors) ( 2009;). Bergey's Manual of Systematic Bacteriology, 2nd edn.., vol. 3. New York: Springer;.
    [Google Scholar]
  5. Dhakal R., Chauhan K., Seale R.B., Deeth H.C., Pillidge C.J., Powell I.B., Craven H., Turner M.S.. ( 2013;). Genotyping of dairy Bacillus licheniformis isolates by high resolution melt analysis of multiple variable number tandem repeat loci. Food Microbiol 34: 344–351 [CrossRef] [PubMed].
    [Google Scholar]
  6. Dhakal R., Seale R.B., Deeth H.C., Craven H., Turner M.S.. ( 2014;). Draft genome comparison of representatives of the three dominant genotype groups of dairy Bacillus licheniformis strains. Appl Environ Microbiol 80: 3453–3462 [CrossRef] [PubMed].
    [Google Scholar]
  7. Dischinger J., Josten M., Szekat C., Sahl H.G., Bierbaum G.. ( 2009;). Production of the novel two-peptide lantibiotic lichenicidin by Bacillus licheniformis DSM 13. PLoS One 4: e6788 [CrossRef] [PubMed].
    [Google Scholar]
  8. Dunlap C.. ( 2015;). The status of the species Bacillus aerius. Request for an Opinion. Int J Syst Evol Microbiol (in press). [CrossRef] [PubMed].
    [Google Scholar]
  9. Fischer W., Laine R.A., Nakano M.. ( 1978;). On the relationship between glycerophosphoglycolipids and lipoteichoic acids in gram-positive bacteria. II. Structures of glycerophosphoglycolipids. Biochim Biophys Acta 528: 298–308 [CrossRef] [PubMed].
    [Google Scholar]
  10. Jolley K.A., Maiden M.C.. ( 2010;). BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 11: 595 [CrossRef] [PubMed].
    [Google Scholar]
  11. Kämpfer P., Rosselló-Mora R., Falsen E., Busse H.-J., Tindall B.J.. ( 2006;). Cohnella thermotolerans gen. nov., sp. nov., and classification of ‘Paenibacillus hongkongensis’ as Cohnella hongkongensis sp. nov.. Int J Syst Evol Microbiol 56: 781–786 [CrossRef] [PubMed].
    [Google Scholar]
  12. Konz D., Klens A., Schörgendorfer K., Marahiel M.A.. ( 1997;). The bacitracin biosynthesis operon of Bacillus licheniformis ATCC 10716: molecular characterization of three multi-modular peptide synthetases. Chem Biol 4: 927–937 [CrossRef] [PubMed].
    [Google Scholar]
  13. Lai Q., Liu Y., Shao Z.. ( 2014;). Bacillus xiamenensis sp. nov., isolated from intestinal tract contents of a flathead mullet (Mugil cephalus). Antonie van Leeuwenhoek 105: 99–107 [CrossRef] [PubMed].
    [Google Scholar]
  14. Madslien E.H., Olsen J.S., Granum P.E., Blatny J.M.. ( 2012;). Genotyping of B. licheniformis based on a novel multi-locus sequence typing (MLST) scheme. BMC Microbiol 12: 230 [CrossRef] [PubMed].
    [Google Scholar]
  15. Meier-Kolthoff J.P., Auch A.F., Klenk H.P., Göker M.. ( 2013;). Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14: 60 [CrossRef] [PubMed].
    [Google Scholar]
  16. Nam Y.D., Yi S.H., Lim S.I.. ( 2012;). Bacterial diversity of cheonggukjang, a traditional Korean fermented food, analyzed by barcoded pyrosequencing. Food Contr 28: 135–142 [CrossRef].
    [Google Scholar]
  17. Palmisano M.M., Nakamura L.K., Duncan K.E., Istock C.A., Cohan F.M.. ( 2001;). Bacillus sonorensis sp. nov., a close relative of Bacillus licheniformis, isolated from soil in the Sonoran Desert, Arizona. Int J Syst Evol Microbiol 51: 1671–1679 [CrossRef] [PubMed].
    [Google Scholar]
  18. Shivaji S., Chaturvedi P., Suresh K., Reddy G.S., Dutt C.B., Wainwright M., Narlikar J.V., Bhargava P.M.. ( 2006;). Bacillus aerius sp. nov., Bacillus aerophilus sp. nov., Bacillus stratosphericus sp. nov. and Bacillus altitudinis sp. nov., isolated from cryogenic tubes used for collecting air samples from high altitudes. Int J Syst Evol Microbiol 56: 1465–1473 [CrossRef] [PubMed].
    [Google Scholar]
  19. Staneck J.L., Roberts G.D.. ( 1974;). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28: 226–231 [PubMed].
    [Google Scholar]
  20. Stuart C.A., Van Stratum E., Rustigian R.. ( 1945;). Further studies on urease production by Proteus and related organisms. J Bacteriol 49: 437–444 [PubMed].
    [Google Scholar]
  21. Sumpavapol P., Tongyonk L., Tanasupawat S., Chokesajjawatee N., Luxananil P., Visessanguan W.. ( 2010;). Bacillus siamensis sp. nov., isolated from salted crab (poo-khem) in Thailand. Int J Syst Evol Microbiol 60: 2364–2370 [CrossRef] [PubMed].
    [Google Scholar]
  22. Tamura K., Nei M.. ( 1993;). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10: 512–526 [PubMed].
    [Google Scholar]
  23. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  24. Tindall B.J.. ( 1990;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13: 128–130 [CrossRef].
    [Google Scholar]
  25. Tsuge K., Matsui K., Itaya M.. ( 2007;). Production of the non-ribosomal peptide plipastatin in Bacillus subtilis regulated by three relevant gene blocks assembled in a single movable DNA segment. J Biotechnol 129: 592–603 [CrossRef] [PubMed].
    [Google Scholar]
  26. Wayne L.G., Brenner D.J., Colwell R.R., Grimont P.A.D., Kandler O., Krichevsky M.I., Moore L.H., Moore W.E.C., Murray R.G.E., other authors. ( 1987;). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  27. Wu S., Zhong J., Huan L.. ( 2006;). Genetics of subpeptin JM4-A and subpeptin JM4-B production by Bacillus subtilis JM4. Biochem Biophys Res Commun 344: 1147–1154 [CrossRef] [PubMed].
    [Google Scholar]
  28. Yasmin A., Kenny J.G., Shankar J., Darby A.C., Hall N., Edwards C., Horsburgh M.J.. ( 2010;). Comparative genomics and transduction potential of Enterococcus faecalis temperate bacteriophages. J Bacteriol 192: 1122–1130 [CrossRef] [PubMed].
    [Google Scholar]
  29. Zhou Y., Liang Y., Lynch K.H., Dennis J.J., Wishart D.S.. ( 2011;). phast: a fast phage search tool. Nucleic Acids Res 39: (Suppl), W347–W352 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000441
Loading
/content/journal/ijsem/10.1099/ijsem.0.000441
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error