1887

Abstract

Strain KhalAKB1, a mesophilic, anaerobic, rod-shaped bacterium, was isolated from water collected from a mesothermic Tunisian spring. Cells were Gram-staining-positive rods, occurring singly or in pairs and motile by one lateral flagellum. Strain KhalAKB1 grew at 15–45 °C (optimum 30 °C), at pH 5.5–8.5 (optimum pH 7.0) and in the presence of 0–35 g NaCl l (optimum 1 g NaCl l). It fermented yeast extract and a wide range of carbohydrates including cellobiose, -glucose, -ribose, sucrose, -xylose, maltose, -galactose and starch as electron donors. Acetate, ethanol, CO and H were end products of glucose metabolism. It reduced elemental sulfur, but not sulfate, thiosulfate or sulfite, into sulfide. The DNA G+C content was 37.6 mol%. The predominant cellular fatty acids were C and C. Phylogenetic analysis of the 16S rRNA gene sequence suggested as the closest relative of this isolate (identity of 97.2 % to the type strain). Based on phenotypic, phylogenetic and genotypic taxonomic characteristics, strain KhalAKB1 is proposed to be assigned to a novel species within the genus , order , sp. nov. The type strain is KhalAKB1 ( = DSM 28450 = JCM 19912).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000445
2015-10-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/10/3501.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000445&mimeType=html&fmt=ahah

References

  1. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J.. ( 1990;). Basic local alignment search tool. J Mol Biol 215: 403–410 [CrossRef] [PubMed].
    [Google Scholar]
  2. Ben Hania W., Fraj B., Postec A., Fadhlaoui K., Hamdi M., Ollivier B., Fardeau M.-L.. ( 2012;). Fusibacter tunisiensis sp. nov., isolated from an anaerobic reactor used to treat olive-mill wastewater. Int J Syst Evol Microbiol 62: 1365–1368 [CrossRef] [PubMed].
    [Google Scholar]
  3. Cashion P., Holder-Franklin M.A., McCully J., Franklin M.. ( 1977;). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81: 461–466 [CrossRef] [PubMed].
    [Google Scholar]
  4. Collins M.D., Lawson P.A., Willems A., Cordoba J.J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J.A.E.. ( 1994;). The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44: 812–826 [CrossRef] [PubMed].
    [Google Scholar]
  5. Cord-Ruwisch R.. ( 1985;). A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate reducing bacteria. J Microbiol Methods 4: 33–36 [CrossRef].
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12: 133–142 [CrossRef] [PubMed].
    [Google Scholar]
  7. Edgar R.C.. ( 2004;). muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797 [CrossRef] [PubMed].
    [Google Scholar]
  8. Fardeau M.-L., Cayol J.-L., Magot M., Ollivier B.. ( 1993;). H2 oxidation in the presence of thiosulfate, by a Thermoanaerobacter strain isolated from an oil-producing well. FEMS Microbiol Lett 113: 327–332 [CrossRef].
    [Google Scholar]
  9. Fardeau M.-L., Ollivier B., Patel B.K.C., Magot M., Thomas P., Rimbault A., Rocchiccioli F., Garcia J.-L.. ( 1997;). Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol 47: 1013–1019 [CrossRef] [PubMed].
    [Google Scholar]
  10. Hungate R.E.. ( 1969;). A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B: 117–132 [CrossRef].
    [Google Scholar]
  11. Huss V.A.R., Festl H., Schleifer K.H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4: 184–192 [CrossRef] [PubMed].
    [Google Scholar]
  12. Khelifi N., Ben Romdhane E., Hedi A., Postec A., Fardeau M.-L., Hamdi M., Tholozan J.-L., Ollivier B., Hirschler-Réa A.. ( 2010;). Characterization of Microaerobacter geothermalis gen. nov., sp. nov., a novel microaerophilic, nitrate- and nitrite-reducing thermophilic bacterium isolated from a terrestrial hot spring in Tunisia. Extremophiles 14: 297–304 [CrossRef] [PubMed].
    [Google Scholar]
  13. Kuykendall L.D., Roy M.A., O'Neill J.J., Devine T.E.. ( 1988;). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38: 358–361 [CrossRef].
    [Google Scholar]
  14. Mesbah M., Premachandran U., Whitman W.B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  15. Miller L.T.. ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16: 584–586 [PubMed].
    [Google Scholar]
  16. Ravot G., Magot M., Fardeau M.-L., Patel B.K.C., Thomas P., Garcia J.-L., Ollivier B.. ( 1999;). Fusibacter paucivorans gen. nov., sp. nov., an anaerobic, thiosulfate-reducing bacterium from an oil-producing well. Int J Syst Bacteriol 49: 1141–1147 [CrossRef] [PubMed].
    [Google Scholar]
  17. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  18. Smii L., Ben Hania W., Cayol J.-L., Joseph M., Hamdi M., Ollivier B., Fardeau M.-L.. ( 2015;). Fusibacter bizertensis sp. nov., isolated from a corroded kerosene storage tank. Int J Syst Evol Microbiol 65: 117–121 [CrossRef] [PubMed].
    [Google Scholar]
  19. Tamura K., Nei M., Kumar S.. ( 2004;). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101: 11030–11035 [CrossRef] [PubMed].
    [Google Scholar]
  20. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  21. Wayne L.G., Brenner D.J., Colwell R.R., Grimont P.A.D., Kandler O., Krichevsky M.I., Moore L.H., Moore W.E.C., Murray R.G.E., other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  22. Widdel F., Pfennig N.. ( 1982;). Studies on dissimilatory sulphate reducing bacteria that decompose fatty acids II. Incomplete oxidation of propionate by Desulfobulbus propionicus gen. nov., sp. nov. Arch Microbiol 131: 360–365 [CrossRef].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000445
Loading
/content/journal/ijsem/10.1099/ijsem.0.000445
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error