1887

Abstract

A novel Gram-stain-negative, oxidase- and catalase-positive, aerobic bacterium, designated strain SM1351, was isolated from surface seawater of the Atlantic Ocean. This strain grew at 4–45 °C and with 5–90 g NaCl l. It did not reduce nitrate to nitrite and could not hydrolyse starch or DNA. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the strain was affiliated with the genus in the family , with sequence similarities with the type strains of and , the two recognized species of the genus , of 96.2 and 94.6 %, respectively. The major fatty acids of strain SM1351 were Cω7 and/or iso-C 2-OH, Cω8, Cω7 and C and the major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The major respiratory quinone was ubiquinone Q-8. The genomic DNA G+C content of strain SM1351 was 62 mol%. On the basis of the polyphasic characterization of strain SM1351 in this study, it is considered to represent a novel species in the genus , for which the name sp. nov. is proposed. The type strain is SM1351 ( = CCTCC AB 2014266 = JCM 30304). Moreover, the transfer of Lucena 2010 to gen. nov. as comb. nov. (type strain 7SM29 = CECT 7447 = DSM 21924) and an emended description of the genus are also proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000431
2015-10-01
2019-10-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/10/3413.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000431&mimeType=html&fmt=ahah

References

  1. Altschul S.F. , Madden T.L. , Schäffer A.A. , Zhang J. , Zhang Z. , Miller W. , Lipman D.J. . ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402 [CrossRef] [PubMed].
    [Google Scholar]
  2. Bowman J.P. . ( 2000;). Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50: 1861–1868.[CrossRef]
    [Google Scholar]
  3. Buck J.D. . ( 1982;). Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44: 992–993.
    [Google Scholar]
  4. Felsenstein J. . ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  5. Fitch W.M. . ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  6. Kim O.-S. , Cho Y.-J. , Lee K. , Yoon S.-H. , Kim M. , Na H. , Park S.-C. , Jeon Y.S. , Lee J.-H. , other authors . ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  7. Kimura M. . ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120 [CrossRef] [PubMed].
    [Google Scholar]
  8. Komagata K. , Suzuki K. . ( 1987;). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19: 161–207 [CrossRef] [PubMed].
    [Google Scholar]
  9. Lane D.J. . ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E. , Goodfellow M. . Chichester: Wiley;.
    [Google Scholar]
  10. Lucena T. , Pascual J. , Garay E. , Arahal D.R. , Macián M.C. , Pujalte M.J. . ( 2010;). Haliea mediterranea sp. nov., a marine gammaproteobacterium. Int J Syst Evol Microbiol 60: 1844–1848 [CrossRef] [PubMed].
    [Google Scholar]
  11. Marmur J. . ( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3: 208–218 [CrossRef].
    [Google Scholar]
  12. Marmur J. , Doty P. . ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5: 109–118 [CrossRef] [PubMed].
    [Google Scholar]
  13. Murray R.G.E. , Doetsch R.N. , Robinow C.F. . ( 1994;). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  14. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.
    [Google Scholar]
  15. Shieh W.Y. , Lin Y.T. , Jean W.D. . ( 2004;). Pseudovibrio denitrificans gen. nov., sp. nov., a marine, facultatively anaerobic, fermentative bacterium capable of denitrification. Int J Syst Evol Microbiol 54: 2307–2312 [CrossRef] [PubMed].
    [Google Scholar]
  16. Smibert R.M. , Krieg N.R. . ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  17. Spring S. , Riedel T. , Spröer C. , Yan S. , Harder J. , Fuchs B.M. . ( 2013a;). Pseudohaliea rubra gen. nov., comb. nov. In List of new names and new combinations previously effectively, but not validly, published, Validation List no. 154. Int J Syst Evol Microbiol 63: 3931–3934 [CrossRef] [PubMed].
    [Google Scholar]
  18. Spring S. , Riedel T. , Spröer C. , Yan S. , Harder J. , Fuchs B.M. . ( 2013b;). Taxonomy and evolution of bacteriochlorophyll a-containing members of the OM60/NOR5 clade of marine gammaproteobacteria: description of Luminiphilus syltensis gen. nov., sp. nov., reclassification of Haliea rubra as Pseudohaliea rubra gen. nov., comb. nov., and emendation of Chromatocurvus halotolerans . BMC Microbiol 13: 118 [CrossRef] [PubMed].
    [Google Scholar]
  19. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  20. Urios L. , Intertaglia L. , Lesongeur F. , Lebaron P. . ( 2008;). Haliea salexigens gen. nov., sp. nov., a member of the Gammaproteobacteria from the Mediterranean Sea. Int J Syst Evol Microbiol 58: 1233–1237 [CrossRef] [PubMed].
    [Google Scholar]
  21. Urios L. , Intertaglia L. , Lesongeur F. , Lebaron P. . ( 2009;). Haliea rubra sp. nov., a member of the Gammaproteobacteria from the Mediterranean Sea. Int J Syst Evol Microbiol 59: 1188–1192 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000431
Loading
/content/journal/ijsem/10.1099/ijsem.0.000431
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error