-
Volume 65,
Issue Pt_10,
2015
Volume 65, Issue Pt_10, 2015
- NEW TAXA
-
- Proteobacteria
-
-
Ursidibacter maritimus gen. nov., sp. nov. and Ursidibacter arcticus sp. nov., two new members of the family Pasteurellaceae isolated from the oral cavity of bears
Thirty-three suspected strains of the family Pasteurellaceae isolated from the oral cavity of polar and brown bears were characterized by genotypic and phenotypic tests. Phylogenetic analysis of partial 16S rRNA gene and rpoB sequences showed that the investigated isolates formed two closely related monophyletic groups, representing two novel species of a new genus. Based on 16S rRNA gene sequence comparison Bibersteinia trehalosi was the closest related species with a validly published name, with 95.4 % similarity to the polar bear group and 94.4 % similarity to the brown bear group. Otariodibacter oris was the closest related species based on rpoB sequence comparison with a similarity of 89.8 % with the polar bear group and 90 % with the brown bear group. The new genus could be separated from existing genera of the family Pasteurellaceae by three to ten phenotypic characters, and the two novel species could be separated from each other by two phenotypic characters. It is proposed that the strains should be classified as representatives of a new genus, Ursidibacter gen. nov., with two novel species: the type species Ursidibacter maritimus sp. nov., isolated from polar bears (type strain Pb43106T = CCUG 65144T = DSM 28137T, DNA G+C content 39.3 mol%), and Ursidibacter arcticus sp. nov., isolated from brown bears (type strain Bamse61T = CCUG 65145T = DSM 28138T).
-
-
-
Massilia arvi sp. nov., isolated from fallow-land soil previously cultivated with Brassica oleracea, and emended description of the genus Massilia
More LessA novel bacterial strain, designated THG-RS2OT, was isolated from fallow-land soil previously cultivated with Brassica oleracea in Yongin, South Korea. Cells were Gram-stain-negative, aerobic, non-motile rods, catalase- and oxidase-positive. Strain THG-RS2OT grew optimally at 25–37 °C, at pH 7.0 and in the absence of NaCl. 16S rRNA gene sequence analysis demonstrated that strain THG-RS2OT shows highest sequence similarity with Massilia kyonggiensis KACC 17471T followed by Massilia aerilata KACC 12505T, Massilia niastensis KACC 12599T, Massilia tieshanensis KACC 14940T and Massilia haematophila KCTC 32001T. Levels of DNA–DNA relatedness between strain THG-RS2OT and the closest phylogenetic neighbours were below 55.0 % and the DNA G+C content of strain THG-RS2OT was 63.2 mol%. Major fatty acids were C16 : 0, cyclo-C17 : 0 and summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c). The major respiratory quinone was identified as ubiquonone-8 and predominant polar lipids were determined to be diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. Characterization by 16S rRNA gene sequence analysis, DNA–DNA hybridization, ubiquinone, polar lipid, fatty acid composition, and physiological and biochemical parameters revealed that strain THG-RS2OT represents a novel species of the genus Massilia. Hence, the present study describes a novel species for which the name Massilia arvi sp. nov. is proposed. The type strain is THG-RS2OT ( = KCTC 42609T = CCTCC AB 2015115T).
-
-
-
Sulfurifustis variabilis gen. nov., sp. nov., a sulfur oxidizer isolated from a lake, and proposal of Acidiferrobacteraceae fam. nov. and Acidiferrobacterales ord. nov.
More LessA novel autotrophic bacterium, strain skN76T, was isolated from sediment of a lake in Japan. As sole electron donor to support chemolithoautotrophic growth, the strain oxidized thiosulfate, tetrathionate and elemental sulfur. For growth, the optimum temperature was 42–45 °C and the optimum pH was 6.8–8.2. The cells were Gram-stain-negative, catalase-positive and oxidase-positive. The strain exhibited changes in morphology depending on growth temperature. Cells grown at the optimum temperature were rod-shaped (0.9–3.0 μm long and 0.3–0.5 μm wide), whereas a filamentous form was observed when the strain was cultured at the lowest permissive growth temperatures. The G+C content of genomic DNA was 69 mol%. The major components in the fatty acid profile were C16 : 0, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and summed feature 9 (iso-C17 : 1ω9c and/or 10-methyl C16 : 0). Phylogenetic analysis based on 16S rRNA gene sequences indicated that the closest cultivated relative of strain skN76T was Acidiferrobacter thiooxydans m-1T, with sequence similarity of 93 %. On the basis of its phylogenetic and phenotypic properties, strain skN76T ( = DSM 100313T = NBRC 110942T) is proposed as the type strain of a novel species of a novel genus, Sulfurifustis variabilis gen. nov., sp. nov. Novel taxa, Acidiferrobacteraceae fam. nov. and Acidiferrobacterales ord. nov., are also proposed to accommodate the genera Acidiferrobacter and Sulfurifustis gen. nov.
-
-
-
Erythrobacter atlanticus sp. nov., a bacterium from ocean sediment able to degrade polycyclic aromatic hydrocarbons
More LessA Gram-stain-negative, motile, rod-shaped, orange-pigmented bacterium able to degrade polycyclic aromatic hydrocarbons was isolated from deep-sea sediment of the Atlantic Ocean and subjected to a polyphasic taxonomic study. The strain, designated s21-N3T, could grow at 4–37 °C (optimum 28 °C), at pH 5–10 (optimum pH 7–8) and with 1–7 % (w/v) NaCl (optimum 2–3 %). Strain s21-N3T was positive for nitrate reduction, denitrification, aesculin hydrolysis, oxidase and catalase, but negative for indole production and urease. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain s21-N3T formed a distinct branch within the genus Erythrobacter, sharing high similarities with three closely related strains, Erythrobacter marinus HWDM-33T (98.67 %), ‘Erythrobacter luteus’ KA37 (97.80 %) and Erythrobacter gangjinensis K7-2T (97.59 %). The similarities between strain s21-N3T and other type strains of recognized species within the genus Erythrobacter ranged from 95.00 to 96.47 %. The digital DNA–DNA hybridization values and average nucleotide identity (ANI) values between strain s21-N3T and the three closely related strains Erythrobacter marinus HWDM-33T, ‘Erythrobacter luteus’ KA37 and Erythrobacter gangjinensis K7-2T were 18.60, 18.00 and 18.50 % and 74.24, 72.49 and 72.54 %, respectively. The principal fatty acids were summed feature 8 (C18 : 1ω7c/ω6c) and summed feature 3 (C16 : 1ω7c/ω6c). The respiratory lipoquinone was identified as Q-10. The major polar lipids comprised sphingoglycolipid, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine and diphosphatidylglycerol. The G+C content of the chromosomal DNA was determined to be 58.18 mol%. The combined genotypic and phenotypic distinctiveness demonstrated that strain s21-N3T represents a novel species of the genus Erythrobacter, for which the name Erythrobacter atlanticus sp. nov. is proposed, with the type strain s21-N3T ( = MCCC 1A00519T = KCTC 42697T).
-
-
-
Sphingopyxis flava sp. nov., isolated from a hexachlorocyclohexane (HCH)-contaminated soil
A Gram-negative-staining, aerobic, non-motile, non-spore-forming, rod-shaped and yellow-pigmented bacterium, designated R11HT, was isolated from a soil sample collected from a hexachlorocyclohexane dumpsite located at Ummari village, Lucknow, Uttar Pradesh, India. The 16S rRNA gene sequence similarity between strain R11HT and the type strains of species of genus Sphingopyxis with validly published names ranged from 93.75 to 97.85 %. Strain R11HT showed the highest 16S rRNA gene sequence similarity to Sphingopyxis indica DS15T (97.85 %), followed by Sphingopyxis soli JCM15910T (97.79 %), Sphingopyxis ginsengisoli KCTC 12582T (97.77 %) and Sphingopyxis panaciterrulae KCTC 22112T (97.34 %). The DNA G+C content of strain R11HT was 63.5 mol%. DNA–DNA relatedness between strain R11HT and its closest phylogenetic neighbours was well below the threshold value of 70 %, which suggested that strain R11HT represents a novel species of the genus Sphingopyxis. The major polar lipids of strain R11HT were sphingoglycolipid and other lipids commonly reported in this genus, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol and phosphatidylmonomethylethanolamine. Spermidine was detected as the major polyamine. The chemotaxonomic markers in strain R11HT confirmed its classification in the genus Sphingopyxis, i.e. Q-10 as the major ubiquinone and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and C14 : 0 2-OH as the predominant fatty acids. Results obtained from DNA–DNA hybridization and chemotaxonomic and phenotypic analyses clearly distinguished strain R11HT from its closest phylogenetic neighbours. Thus, strain R11HT represents a novel species of the genus Sphingopyxis, for which the name Sphingopyxis flava sp. nov. is proposed. The type strain is R11HT ( = DSM 28472T = MCC 2778T).
-
- Bacteroidetes
-
-
Saccharicrinis marinus sp. nov., isolated from marine sediment
More LessA novel bacterial strain, designated Y11T, was isolated from marine sediment at Weihai in China. Comparative analysis of 16S rRNA gene sequences demonstrated that the novel isolate showed highest similarity to Saccharicrinis fermentans DSM 9555T (94.0 %) and Saccharicrinis carchari SS12T (92.7 %). Strain Y11T was a Gram-stain-negative, rod-shaped, non-endospore-forming, yellow-pigmented bacterium and was able to hydrolyse agar weakly. It was catalase-negative, oxidase-positive, facultatively anaerobic and motile by gliding. Optimal growth occurred at 28–30 °C, at pH 7.0–7.5 and in the presence of 2–3 % (w/v) NaCl. The DNA G+C content was 34.4 mol%. The strain contained MK-7 as the prevalent menaquinone. The major cellular fatty acids were iso-C15 : 0, anteiso-C15 : 0 and C15 : 1ω6c. The predominant polar lipids were phosphatidylethanolamine and two unknown lipids. Data from the present polyphasic taxonomic study clearly place the strain as representing a novel species within the genus Saccharicrinis, for which the name Saccharicrinis marinus sp. nov. is proposed. The type strain is Y11T ( = CICC10837T = KCTC42400T).
-
-
-
Lewinella xylanilytica sp. nov., a member of the family Saprospiraceae isolated from coastal seawater
More LessAn orange-pigmented bacterium, designated strain 13-9-B8T, was isolated from a seawater sample collected at Marado, Jeju Island, South Korea. The novel strain was Gram-staining-negative, non-motile, non-gliding, rod-shaped and aerobic. A phylogenetic analysis based on 16S rRNA gene sequences revealed that the strain clustered with members of the genus Lewinella of the family Saprospiraceae in the phylum Bacteroidetes and was most closely related to the species Lewinella marina (95.6 % similarity to the type strain). Strain 13-9-B8T grew optimally at 30 °C, pH 7.0 and with 2 % (w/v) NaCl. Strain 13-9-B8T contained MK-7 as the predominant menquinone and summed feature 3, iso-C15 : 0 and iso-C17 : 0 3-OH as the major fatty acids. The polar lipids detected in strain 13-9-B8T were phosphatidylethanolamine, one unidentified aminolipid, one unidentified phospholipid and eight unidentified lipids. The DNA G+C content of strain 13-9-B8T was 59.1 mol%. Based on phenotypic, chemotaxonomic and phylogenetic data presented, strain 13-9-B8T is considered to represent a novel species of the genus Lewinella, for which the name Lewinella xylanilytica sp. nov. is proposed. The type strain is 13-9-B8T ( = DSM 29526T = KCTC 32663T).
-
-
-
Algoriphagus aestuarii sp. nov., a member of the Cyclobacteriaceae isolated from a tidal-flat sediment of the Yellow Sea in Korea
More LessA Gram-strain-negative, coccoid or oval-shaped, non-motile bacterial strain, designated MDM-1T, was isolated from a tidal-flat sediment on the Korean peninsula. Strain MDM-1T was found to grow optimally at pH 7.0–8.0, at 30 °C and in the presence of 2–3 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain MDM-1T falls within the clade comprising species of the genus Algoriphagus, clustering with the type strains of Algoriphagus halophilus, A. lutimaris, A. chungangensis and A. machipongonensis, with which it exhibited 97.2–98.5 % 16S rRNA gene sequence similarity. Sequence similarities to the type strains of the other recognized species of the genus Algoriphagus were 92.8–97.6 %. Strain MDM-1T was found to contain MK-7 as the predominant menaquinone and iso-C15 : 0 and summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c) as the major fatty acids. The major polar lipids were identified as phosphatidylcholine, phosphatidylethanolamine and two unidentified lipids. The DNA G+C content of strain MDM-1T was determined to be 42.7 mol% and the mean DNA–DNA relatedness with A. halophilus KCTC 12051T, A. lutimaris S1-3T, A. chungangensis KCTC 23759T, A. machipongonensis DSM 24695T and A. ratkowskyi CIP 107452T was 19.7–5.2 %. Differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain MDM-1T is distinguishable from recognized species of the genus Algoriphagus. On the basis of the data presented, strain MDM-1T is proposed to represent a novel species of the genus Algoriphagus, for which the name Algoriphagus aestuarii sp. nov. is proposed. The type strain is MDM-1T ( = KCTC 42199T = NBRC 110552T).
-
-
-
Spirosoma fluviale sp. nov., isolated from river water
More LessA bacterial strain, designated MSd3T, was isolated from a freshwater sample collected from the Hosoda River in Japan. The cells of strain MSd3T were Gram-stain-negative, non-spore-forming, aerobic, non-motile, curved rods forming rings, coils and undulating filaments. The 16S rRNA gene sequence of strain MSd3T showed closest similarity to that of Spirosoma linguale DSM 74T (97.6 % similarity) and similarity to other members of the genus Spirosoma ranged from 90.3 to 95.9 %. Strain MSd3T contained menaquinone 7 as the sole respiratory quinone. The major cellular fatty acids were summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c) and C16 : 1ω5c. The polar lipids were phosphatidylethanolamine, three unidentified aminophospholipids and three unidentified polar lipids. The DNA G+C content was 53.3 mol%. The DNA–DNA relatedness between strain MSd3T and S. linguale DSM 74T was 19 % or 25 % (reciprocal value). From the chemotaxonomic and physiological data and the levels of DNA–DNA relatedness, strain MSd3T should be classified as the representative of a novel species of the genus Spirosoma, for which the name Spirosoma fluviale sp. nov. (type strain MSd3T = JCM 30659T = DSM 29961T) is proposed.
-
-
-
Flectobacillus rhizosphaerae sp. nov., isolated from the rhizosphere soil of Oryza sativa (L.), and emended description of the genus Flectobacillus
More LessA Gram-stain-negative, aerobic, pale orange, rod-shaped, non-motile bacterial strain, designated JC289T was isolated from a rhizosphere soil sample of the plant Oryza sativa (L.). 16S rRNA gene sequence analysis clearly allocated strain JC289T to the Flectobacillus cluster, showing highest sequence similarities to Flectobacillus roseus GFA-11T (99.5 %), Flectobacillus major ATCC 29496T (96.7 %) and Flectobacillus lacus CL-GP79T (94.6 %). Major (>5 %) fatty acids of strain JC289T were C16 : 1ω5c, iso-C15 : 0, C15 : 0 2-OH, iso-C15 : 0 3-OH and C16 : 1ω7c/C16 : 1ω6c, with minor amounts (>1– < 5 %) of C14 : 0, C16 : 0, anteiso-C15 : 0, C16 : 0 3-OH, iso-C17 : 0 3-OH, anteiso-C17 : 1B and/or iso-C17 : 1I. Menaquinone-7 was the major quinone of strain JC289T, and the polar lipid profile contained phosphatidylethanolamine, five unidentified aminophospholipids, two unidentified phospholipids, two unidentified aminolipids, two unidentified glycolipids and five unidentified lipids. DNA–DNA relatedness values of strain JC289T with Flectobacillus roseus LMG 24501T and Flectobacillus major LMG 13163T were 24.6 % (31.4 %, reciprocal analysis) and 16.2 % (22.4 %), respectively. On the basis of 16S rRNA gene sequence analysis, physiological and biochemical test results, and chemotaxonomic analysis, strain JC289T can be differentiated from its closest relatives in the genus Flectobacillus. Based on the data presented, it is concluded that strain JC289T represents a novel species of the genus Flectobacillus, for which the name Flectobacillus rhizosphaerae sp. nov. is proposed. The type strain is JC289T ( = KCTC 42575T = LMG 28712T).
-
-
-
Pedobacter lignilitoris sp. nov., isolated from wood falls
More LessA Gram-stain-negative, aerobic, non-motile and rod-shaped bacterial strain, designated W-WS13T, was isolated from wood falls collected around Wando, an island in the South Sea of South Korea, and subjected to a polyphasic taxonomic study. Strain W-WS13T grew optimally at 30 °C, at pH 7.5 and in the presence of 0.5 % NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain W-WS13T belonged to the genus Pedobacter, clustering robustly with the type strain of Pedobacter arcticus, sharing 95.9 % sequence similarity. Strain W-WS13T exhibited 16S rRNA gene sequence similarity of 90.1–95.6 % to the type strains of the other species of the genus Pedobacter. Strain W-WS13T contained MK-7 as the predominant menaquinone and iso-C15 : 0, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and iso-C17 : 0 3-OH as the major fatty acids. The major polar lipid detected in strain W-WS13T was phosphatidylethanolamine. The DNA G+C content of strain W-WS13T was 36.9 mol%. Phylogenetic distinctiveness and differential phenotypic properties of strain W-WS13T revealed that the novel strain is separated from recognized species of the genus Pedobacter. On the basis of the data presented, strain W-WS13T is considered to represent a novel species of the genus Pedobacter, for which the name Pedobacter lignilitoris sp. nov. is proposed. The type strain is W-WS13T ( = KCTC 42500T = CECT 8725T).
-
-
-
Pedobacter nanyangensis sp. nov., isolated from herbicide-contaminated soil
A Gram-stain-negative, strictly aerobic, non-spore-forming, motile, rod-shaped bacterium, designated Q-4T, was isolated from a herbicide-contaminated soil sample in Nanyang, Henan province, China. Strain Q-4T grew optimally in the LB medium without NaCl supplement at a pH range of 6.0–7.0 and a temperature of 30 °C. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain Q-4T was most closely related to ‘Pedobacter zeaxanthinifaciens’ TDMA-5 (97.4 % 16S rRNA gene sequence similarity), followed by Pedobacter xixiisoli S27T (95.8 %). The genomic DNA G+C content of strain Q-4T was 41.8 mol%. MK-7 was the major respiratory quinone. Phosphatidylethanolamine and phosphoaminolipid were the major polar lipids. The major fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH, C16 : 1ω6c and/or C16 : 1ω7c (summed feature 3) and C16 : 1ω7c/C16 : 1ω6c (summed feature 3). Strain Q-4T showed low DNA–DNA relatedness with ‘P. zeaxanthinifaciens’ TDMA-5 (21.4 ± 0.6 %). Physiological and biochemical characteristics are able to distinguish strain Q-4T from the most closely related species of the genus Pedobacter. On the basis of genotypic and phenotypic data, strain Q-4T is considered to represent a novel species of the genus Pedobacter, for which the name Pedobacter nanyangensis sp. nov. is proposed. The type strain is Q-4T ( = KCTC 42442T = ACCC 19798T).
-
-
-
Dysgonomonas alginatilytica sp. nov., an alginate-degrading bacterium isolated from a microbial consortium
Gram-stain-negative, facultatively anaerobic, non-motile, non-spore-forming, rod-shaped bacterium, designated strain HUA-2T, was isolated from an alginate-degrading microbial consortium. Strain HUA-2T was related to Dysgonomonas capnocytophagoides JCM 16697T, Dysgonomonas macrotermitis JCM 19375T and Dysgonomonas mossii CCUG 43457T with 95.1 %, 94.1 % and 92.1 % 16S rRNA gene sequence similarity, respectively. The optimal growth temperature and pH for strain HUA-2T were 35 °C and pH 8.0, respectively. Enzyme production, major fermentation products from glucose, and the major cellular fatty acids were different from those of D. capnocytophagoides CCUG 17966T or other members of the genus Dysgonomonas. Therefore, strain HUA-2T is proposed to represent a novel species of the genus Dysgonomonas, for which we propose the name Dysgonomonas alginatilytica sp. nov. The type strain is HUA-2T ( = DSM 100214T = HUT 8134T).
-
-
-
Winogradskyella litoriviva sp. nov., isolated from coastal seawater
A Gram-stain-negative, facultatively anaerobic, moderately halophilic and gliding bacterium, designated KMM 6491T, was isolated from coastal seawater collected from Troitsa Bay, the Sea of Japan. Comparative analysis of 16S rRNA gene sequences revealed that strain KMM 6491T was a member of the genus Winogradskyella, with 94.5–97.9 % sequence similarity to recognized species of the genus Winogradskyella. The DNA G+C content of strain KMM 6491T was 31.3 mol% and DNA–DNA relatedness values with the type strains of Winogradskyella echinorum, Winogradskyella damuponensis, Winogradskyella eximia and Winogradskyella pulchriflava were in range of 10–26 %. Strain KMM 6491T contained menaquinone 6 (MK-6) as the single quinone and iso-C15 : 0, iso-C15 : 1, iso-C15 : 0 3-OH, iso-C17 : 0 3-OH, C15 : 0 and summed feature 3 (comprising iso-C15 : 0 2-OH and/or C16 : 1ω7c) anteiso-C15 : 0, as the prevalent fatty acids. The major polar lipids of strain KMM 6491T were phosphatidylethanolamine, two unknown aminolipids and two unknown lipids. Strain KMM 6491T was able to grow with 0.5–7 % NaCl and at 4–34 °C. The novel strain decomposed gelatin and starch and produced acid from d-glucose, maltose, mannose, rhamnose, sucrose, fructose and glycerol. On the basis of the results of the phylogenetic and phenotypic analyses it is suggested that strain KMM 6491T represents a novel species of the genus Winogradskyella, for which the name Winogradskyella litoriviva sp. nov. is proposed. The type strain is KMM 6491T ( = KCTC 23972T = LMG 26984T).
-
-
-
Carboxylicivirga linearis sp. nov., isolated from a sea cucumber culture pond
More LessA yellow-pigmented, Gram-stain-negative and facultatively anaerobic bacterium, designated FB218T, was isolated from a sediment sample collected from a sea cucumber culture pond in Rongcheng, China (36° 54′ 36″ N 122° 14′ 34″ E). Cells of strain FB218T were slender, gliding, catalase-positive and oxidase-negative. Optimal growth occurred at 30 °C, pH 6.5–7.0 and in medium containing 2–3 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain FB218T belonged to the genus Carboxylicivirga, family Marinilabiliaceae. The predominant fatty acids were iso-C15 : 0 and anteiso-C15 : 0. MK-7 was the main respiratory quinone. The major polar lipids of strain FB218T were two unidentified lipids and a phospholipid. The genomic DNA G+C content was 40.0 mol%. Based on the distinct phylogenetic position and the combination of physiological and phenotypic characteristics, strain FB218T represents a novel species of the genus Carboxylicivirga, for which the name Carboxylicivirga linearis sp. nov. is proposed. The type strain is FB218T ( = KCTC 42254T = MCCC 1H00106T). An emended description of the genus Carboxylicivirga is also provided.
-
-
-
Fabibacter misakiensis sp. nov., a marine bacterium isolated from coastal surface water
A slightly curved-rod-shaped, pink-pigmented, Gram-stain-negative, aerobic bacterial strain with gliding motility, designated SK-8T, was isolated from coastal surface water of Misaki, Japan. Phylogenetic trees generated using 16S rRNA gene sequences revealed that strain SK-8T belonged to the genus Fabibacter and showed 96.0 % sequence similarity to the type strain of the most closely related species, Fabibacter pacificus DY53T. The novel isolate was phenotypically and physiologically different from previously described strains. The major cellular fatty acids were iso-C15 : 1 G, iso-C15 : 0 and iso-C17 : 0 3-OH. Major polar lipids were phosphatidylethanolamine, two aminophospholipids and an unidentified phospholipid. The DNA G+C content was 39.1 mol% and MK-7 was the only predominant isoprenoid quinone. On the basis of this taxonomic study employing a polyphasic approach, it was suggested that strain SK-8T represents a novel species of the genus Fabibacter, with the newly proposed name Fabibacter misakiensis sp. nov. The type strain is SK-8T ( = NBRC 110216T = KCTC 32969T).
-
-
-
Kordia zhangzhouensis sp. nov., isolated from surface freshwater
More LessAn aerobic, Gram-stain-negative, rod-shaped and non-motile bacterium, JS14SB-1T, was isolated from the surface freshwater of the Jiulong River, PR China. Strain JS14SB-1T grew at 15–38 °C (optimum, 28–35 °C), at pH 6.0–9.0 (optimum pH 7.0) and in the presence of 1.0–7.0 % (w/v) NaCl [optimum 3.0–5.0 % (w/v)]. Phylogenetic analysis, based on 16S rRNA gene sequences, indicated that strain JS14SB-1T was affiliated to the genus Kordia, sharing low similarities (95.1–97.1 %) to all type strains of species of this genus. The digital DNA–DNA hybridization (DDH) value between strain JS14SB-1T and the closely related strain Kordia jejudonensis SSK3-3T was 20.70 ± 2.33 % and far below the 70 % DDH value taken as the gold standard for delineation of bacterial species. The major fatty acids were identified as iso-C15 : 0 and iso-C17 : 0 3-OH. The polar lipids were phosphatidylethanolamine, glycolipid, aminolipid, several unidentified phospholipids and lipids. The predominant menaquinone was MK-6. The G+C content of the genomic DNA was 33.8 mol%. Based on the phenotypic, phylogenetic and chemotaxonomic distinctiveness, strain JS14SB-1T is considered to represent a novel species of the genus Kordia, for which the name Kordia zhangzhouensis sp. nov. is proposed; the type strain is JS14SB-1T ( = MCCC 1A00726T = KCTC 42140T).
-
-
-
Empedobacter stercoris sp. nov., isolated from an input sample of a biogas plant
More LessTwo Gram-stain-negative, rod-shaped bacteria, strains 990B6_12ER2AT and 994B6_12ER2A, were isolated during microbiological analysis of a mixed manure sample which was used as input material for a German biogas plant. Phylogenetic identification based on nearly full-length 16S rRNA gene sequences placed the isolates into the family Flavobacteriaceae within the phylum Bacteroidetes. Strains 990B6_12ER2AT and 994B6_12ER2A shared identical 16S rRNA gene sequences and showed highest 16S rRNA gene sequence similarity to the type strains of Empedobacter falsenii (97.3 %) and Empedobacter brevis (96.8 %).
The major cellular fatty acids of strains 990B6_12ER2AT and 994B6_12ER2A were iso-C15 : 0, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and iso-C17 : 0 3-OH.
The polyamine pattern contained predominantly sym-homospermidine and the quinone system was menaquinone MK-6. Major polar lipids were phosphatidylethanolamine, one unidentified aminolipid and one unidentified polar lipid not containing an amino residue, a phosphate residue or a sugar moiety. In addition, moderate to minor amounts of several unidentified lipids were detected. The DNA G+C content was 31.7 and 29.0 mol%, for strains 990B6_12ER2AT and 994B6_12ER2A, respectively. On the basis of phylogenetic, chemotaxonomic and physiological analysis we propose a novel species of the genus Empedobacter, Empedobacter stercoris sp. nov. (type strain 990B6_12ER2AT = CIP 110833T = LMG 28501T).
-
- Other bacteria
-
-
Deinococcus metalli sp. nov., isolated from an abandoned lead-zinc mine
More LessAn aerobic, non-motile and Gram-staining-positive bacterial strain (1PNM-19T) was isolated from a lead-zinc ore in an abandoned mine and was investigated in a taxonomic study using a polyphasic approach. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain 1PNM-19T was affiliated to the genus Deinococcus and most closely related to Deinococcus aquatilis DSM 23025T and Deinococcus ficus DSM 19119T. The major respiratory quinone was determined to be menaquinone 8 (MK-8) and the major fatty acids contained summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0. A complex polar lipid profile consisted of different unidentified glycolipids and polar lipids, two unidentified aminolipids, an unidentified phosphoglycolipid, phospholipid and aminophospholipid. The genomic DNA G+C content of strain 1PNM-19T was 71.7 ± 0.1 mol%. Based on data from this taxonomic study, strain 1PNM-19T represents a novel species of the genus Deinococcus, for which the name Deinococcus metalli sp. nov. is proposed. The type strain is 1PNM-19T ( = GIMCC 1.654T = CCTCC AB 2014198T = DSM 27521T).
-
-
-
Terriglobus albidus sp. nov., a member of the family Acidobacteriaceae isolated from Namibian semiarid savannah soil
More LessA novel aerobic, chemo-organoheterotrophic bacterium, strain Ac_26_B10T, was isolated from a semiarid savannah soil collected in northern Namibia (Mashare, Kavango region). Based on analysis of its nearly full-length 16S rRNA gene sequence, the isolate belongs to the genus Terriglobus (family Acidobacteriaceae, order Acidobacteriales, class Acidobacteria) and shares 98.3 and 96.9 % 16S rRNA gene sequence similarity with its closest relatives, Terriglobus tenax DRP 35T and T. aquaticus O3SUJ4T. Cells were Gram-negative, coccoid to rod-shaped, non-motile and divided by binary fission. Strain Ac_26_B10T showed weak catalase activity and, in contrast to the other described species of the genus Terriglobus, was oxidase-positive. Compared with the already established species of the genus Terriglobus, the novel strain used a larger range of sugars and sugar alcohols for growth, lacked α-mannosidase activity and exhibited a higher temperature optimum of growth. DNA–DNA hybridization studies with its closest phylogenetic relative, T. tenax DSM 28898T, confirmed that strain Ac_26_B10T represents a distinct genomospecies. Its most abundant fatty acids were iso-C15 : 0, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0. Dominant polar lipids were phosphatidylethanolamine and diphosphatidylglycerol. The predominant menaquinone was MK-8; minor amounts of MK-7 and MK-8(H2) were also recorded. The G+C content of the genomic DNA was 58.5 mol%. On the basis of our polyphasic analysis, Ac_26_B10T represents a novel species of the genus Terriglobus, for which the name Terriglobus albidus sp. nov. is proposed. The type strain is Ac_26_B10T ( = DSM 26559T = LMG 27984T).
-
Volumes and issues
-
Volume 73 (2023)
-
Volume 72 (2022 - 2023)
-
Volume 71 (2020 - 2021)
-
Volume 70 (2020)
-
Volume 69 (2019)
-
Volume 68 (2018)
-
Volume 67 (2017)
-
Volume 66 (2016)
-
Volume 65 (2015)
-
Volume 64 (2014)
-
Volume 63 (2013)
-
Volume 62 (2012)
-
Volume 61 (2011)
-
Volume 60 (2010)
-
Volume 59 (2009)
-
Volume 58 (2008)
-
Volume 57 (2007)
-
Volume 56 (2006)
-
Volume 55 (2005)
-
Volume 54 (2004)
-
Volume 53 (2003)
-
Volume 52 (2002)
-
Volume 51 (2001)
-
Volume 50 (2000)
-
Volume 49 (1999)
-
Volume 48 (1998)
-
Volume 47 (1997)
-
Volume 46 (1996)
-
Volume 45 (1995)
-
Volume 44 (1994)
-
Volume 43 (1993)
-
Volume 42 (1992)
-
Volume 41 (1991)
-
Volume 40 (1990)
-
Volume 39 (1989)
-
Volume 38 (1988)
-
Volume 37 (1987)
-
Volume 36 (1986)
-
Volume 35 (1985)
-
Volume 34 (1984)
-
Volume 33 (1983)
-
Volume 32 (1982)
-
Volume 31 (1981)
-
Volume 30 (1980)
-
Volume 29 (1979)
-
Volume 28 (1978)
-
Volume 27 (1977)
-
Volume 26 (1976)
-
Volume 25 (1975)
-
Volume 24 (1974)
-
Volume 23 (1973)
-
Volume 22 (1972)
-
Volume 21 (1971)
-
Volume 20 (1970)
-
Volume 19 (1969)
-
Volume 18 (1968)
-
Volume 17 (1967)
-
Volume 16 (1966)
-
Volume 15 (1965)
-
Volume 14 (1964)
-
Volume 13 (1963)
-
Volume 12 (1962)
-
Volume 11 (1961)
-
Volume 10 (1960)
-
Volume 9 (1959)
-
Volume 8 (1958)
-
Volume 7 (1957)
-
Volume 6 (1956)
-
Volume 5 (1955)
-
Volume 4 (1954)
-
Volume 3 (1953)
-
Volume 2 (1952)
-
Volume 1 (1951)
Most Read This Month
