1887

Abstract

A Gram-staining-positive, spore-forming, strictly anaerobic bacterium, designated strain LAM0A37, was isolated from enrichment samples collected from a petroleum reservoir in Shengli oilfield. Cells of strain LAM0A37 were rod-shaped and motile by peritrichous flagella. The optimal temperature and pH for growth were 40 °C and 7.0–7.5, respectively. The strain did not require NaCl for growth but tolerated up to 3 % (w/v) NaCl. Strain LAM0A37 was able to utilize glucose, fructose, maltose, xylose, sorbitol, cellobiose, melibiose and melezitose as sole carbon sources. Sulfite was used as an electron acceptor. The main products of glucose fermentation were acetate and CO. The predominant fatty acid was C (23.6 %). The main polar lipid profile comprised of five glycolipids, six phospholipids and two lipids. No menaquinone was detected. The genomic DNA G+C content was 27.1 ± 0.2 mol% as determined by the method. Analysis of the 16S rRNA gene sequence indicated that the isolate was a member of the genus , and was most closely related to JCM 1401 and DSM 6539 with 98.3 % 16S rRNA gene sequence similarity to both. DNA–DNA hybridization values between strain LAM0A37 and type strains of and were 45.6 ± 0.3 % and 38.3 ± 0.4 %, respectively. Based on phenotypic, phylogenetic and chemotaxonomic characteristics, strain LAM0A37 is suggested to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is LAM0A37 ( = ACCC 00740 = JCM 19845).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000450
2015-10-01
2019-12-07
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/10/3522.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000450&mimeType=html&fmt=ahah

References

  1. Bryant M.P.. ( 1972;). Commentary on the Hungate technique for culture of anaerobic bacteria. Am J Clin Nutr 25: 1324–1328 [PubMed].
    [Google Scholar]
  2. Chamkha M., Labat M., Patel B.K., Garcia J.L.. ( 2001;). Isolation of a cinnamic acid-metabolizing Clostridium glycolicum strain from oil mill wastewaters and emendation of the species description. Int J Syst Evol Microbiol 51: 2049–2054 [CrossRef] [PubMed].
    [Google Scholar]
  3. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12: 133–142 [CrossRef] [PubMed].
    [Google Scholar]
  4. Fang M.X., Zhang W.W., Zhang Y.Z., Tan H.Q., Zhang X.Q., Wu M., Zhu X.F.. ( 2012;). Brassicibacter mesophilus gen. nov., sp. nov., a strictly anaerobic bacterium isolated from food industry wastewater. Int J Syst Evol Microbiol 62: 3018–3023 [CrossRef] [PubMed].
    [Google Scholar]
  5. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  6. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  7. Fitch W.M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  8. Gaston L.W., Stadtman E.R.. ( 1963;). Fermentation of ethylene glycol by Clostridium glycolicum, sp. n. J Bacteriol 85: 356–362 [PubMed].
    [Google Scholar]
  9. Gerritsen J., Fuentes S., Grievink W., van Niftrik L., Tindall B.J., Timmerman H.M., Rijkers G.T., Smidt H.. ( 2014;). Characterization of Romboutsia ilealis gen. nov., sp. nov., isolated from the gastro-intestinal tract of a rat, and proposal for the reclassification of five closely related members of the genus Clostridium into the genera Romboutsia gen. nov., Intestinibacter gen. nov., Terrisporobacter gen. nov. and Asaccharospora gen. nov. Int J Syst Evol Microbiol 64: 1600–1616 [CrossRef] [PubMed].
    [Google Scholar]
  10. Holdeman L.V., Cato E.P., Moore W.E.C.. ( 1977;). Anaerobe Laboratory Manual, 4th edn. Blacksburg, VA: Virginia Polytechnic Institute and State University;.
    [Google Scholar]
  11. Hungate R.E.. ( 1969;). A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B 117–132 [CrossRef].
    [Google Scholar]
  12. Huss V.A.R., Festl H., Schleifer K.H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4: 184–192 [CrossRef] [PubMed].
    [Google Scholar]
  13. Johnson M.J., Thatcher E., Cox M.E.. ( 1995;). Techniques for controlling variability in gram staining of obligate anaerobes. J Clin Microbiol 33: 755–758 [PubMed].
    [Google Scholar]
  14. Kämpfer P., Steiof M., Dott W.. ( 1991;). Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21: 227–251 [CrossRef] [PubMed].
    [Google Scholar]
  15. Kane M.D., Brauman A., Breznak J.A.. ( 1991;). Clostridium mayombei sp. nov., an H2/CO2 acetogenic bacterium from the gut of the African soil-feeding termite, Cubitermes speciosus. Arch Microbiol 156: 99–104 [CrossRef].
    [Google Scholar]
  16. Kim O.S., Cho Y.J., Lee K., Yoon S.H., Kim M., Na H., Park S.C., Jeon Y.S., Lee J.H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  17. Mandel M., Marmur J.. ( 1968;). Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B 195–206 [CrossRef].
    [Google Scholar]
  18. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3: 208–218 [CrossRef].
    [Google Scholar]
  19. Marmur J., Doty P.. ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5: 109–118 [CrossRef] [PubMed].
    [Google Scholar]
  20. Miller T.L., Wolin M.J.. ( 1974;). A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl Microbiol 27: 985–987 [PubMed].
    [Google Scholar]
  21. Minnikin D.E., O'Donnell A.G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J.H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  22. Powers E.M.. ( 1995;). Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 61: 3756–3758 [PubMed].
    [Google Scholar]
  23. Ruan Z., Wang Y., Song J., Jiang S., Wang H., Li Y., Zhao B., Jiang R., Zhao B.. ( 2014;). Kurthia huakuii sp. nov., isolated from biogas slurry, and emended description of the genus Kurthia. Int J Syst Evol Microbiol 64: 518–521 [CrossRef] [PubMed].
    [Google Scholar]
  24. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  25. Smibert R.M., Krieg N.R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  26. Steer T., Collins M.D., Gibson G.R., Hippe H., Lawson P.A.. ( 2001;). Clostridium hathewayi sp. nov., from human faeces. Syst Appl Microbiol 24: 353–357 [CrossRef] [PubMed].
    [Google Scholar]
  27. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  28. Tindall B.J.. ( 1990;). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66: 199–202 [CrossRef].
    [Google Scholar]
  29. Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J.. ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173: 697–703 [PubMed].
    [Google Scholar]
  30. Wilde E., Hippe H., Tosunoglu N., Schallehn G., Herwig K., Gottschalk G.. ( 1989;). Clostridium tetanomorphun sp. nov., nom. rev. Int J Syst Bacteriol 39: 127–134 [CrossRef].
    [Google Scholar]
  31. Xu X.W., Huo Y.Y., Wang C.S., Oren A., Cui H.L., Vedler E., Wu M.. ( 2011;). Pelagibacterium halotolerans gen. nov., sp. nov. and Pelagibacterium luteolum sp. nov., novel members of the family Hyphomicrobiaceae. Int J Syst Evol Microbiol 61: 1817–1822 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000450
Loading
/content/journal/ijsem/10.1099/ijsem.0.000450
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error