1887

Abstract

A novel strain, 22II-S11-z3, was isolated from the deep-sea sediment of the Atlantic Ocean. The bacterium was aerobic, Gram-staining-negative, oxidase-positive and catalase-negative, oval- to rod-shaped, and non-motile. Growth was observed at salinities of 1–9 % NaCl and temperatures of 10–45 °C. The isolate could hydrolyse aesculin and Tweens 20, 40 and 80, but not gelatin. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 22II-S11-z3 belonged to the genus , with highest sequence similarity to KCTC 42052 (97.5 %). The average nucleotide identity and digital DNA–DNA hybridization values between strain 22II-S11-z3 and KCTC 42052 were 71.5 % and 20.0 ± 2.3 %, respectively. The G+C content of the chromosomal DNA was 65.5 mol%. The principal fatty acids (>5 %) were summed feature 8 (Cω7/ω6) (35.2 %), C cyclo ω8 (20.9 %), C (11.8 %), 11-methyl Cω7 (11.4 %) and C 3-OH (9.4 %). The respiratory quinone was determined to be Q-10. Diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, nine unidentified phospholipids, one unidentified aminolipid and two unidentified lipids were present. The combined genotypic and phenotypic data show that strain 22II-S11-z3 represents a novel species of the genus , for which the name sp. nov. is proposed, with the type strain 22II-S11-z3 ( = KCTC 42276 = MCCC 1A09432).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000406
2015-10-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/10/3281.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000406&mimeType=html&fmt=ahah

References

  1. Auch A.F., Klenk H.P., Göker M.. ( 2010a;). Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2: 142–148 [CrossRef] [PubMed].
    [Google Scholar]
  2. Auch A.F., von Jan M., Klenk H.P., Göker M.. ( 2010b;). Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2: 117–134 [CrossRef] [PubMed].
    [Google Scholar]
  3. Ausubel F., Brent R., Kingston R., Moore D., Seidman J., Smith J., Struhl K.. ( 1995;). Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, 3rd edn.. New York: Wiley;.
    [Google Scholar]
  4. Dong X.-Z., Cai M.-Y.. ( 2001;). Determinative Manual for Routine Bacteriology Beijing: (English translation) Scientific Press;.
    [Google Scholar]
  5. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  6. Goris J., Konstantinidis K.T., Klappenbach J.A., Coenye T., Vandamme P., Tiedje J.M.. ( 2007;). DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57: 81–91 [CrossRef] [PubMed].
    [Google Scholar]
  7. Kates M.. ( 1986;). Lipid extraction procedures. . In Techniques of Lipidology, pp. 100–111 Amsterdam: Elsevier;.
    [Google Scholar]
  8. Kim O.S., Cho Y.J., Lee K., Yoon S.H., Kim M., Na H., Park S.C., Jeon Y.S., Lee J.H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  9. Liu C., Shao Z.. ( 2005;). Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. Int J Syst Evol Microbiol 55: 1181–1186 [CrossRef] [PubMed].
    [Google Scholar]
  10. Luo R., Liu B., Xie Y., Li Z., Huang W., Yuan J., He G., Chen Y., Pan Q., other authors. ( 2012;). SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1: 18 [CrossRef] [PubMed].
    [Google Scholar]
  11. Meier-Kolthoff J.P., Auch A.F., Klenk H.P., Göker M.. ( 2013;). Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14: 60 [CrossRef] [PubMed].
    [Google Scholar]
  12. Park S., Won S.M., Kim H., Park D.S., Yoon J.H.. ( 2014;). Aestuariivita boseongensis gen. nov., sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 64: 2969–2974 [CrossRef] [PubMed].
    [Google Scholar]
  13. Richter M., Rosselló-Móra R.. ( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106: 19126–19131 [CrossRef] [PubMed].
    [Google Scholar]
  14. Rzhetsky A., Nei M.. ( 1992;). Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol 35: 367–375 [CrossRef] [PubMed].
    [Google Scholar]
  15. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  16. Sambrook J., Fritsch E.F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  17. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  18. Shieh W.Y., Chen Y.W., Chaw S.M., Chiu H.H.. ( 2003;). Vibrio ruber sp. nov., a red, facultatively anaerobic, marine bacterium isolated from sea water. Int J Syst Evol Microbiol 53: 479–484 [CrossRef] [PubMed].
    [Google Scholar]
  19. Skerman V.B.D.. ( 1967;). A Guide to the Identification of the Genera of Bacteria, 2nd edn.. Baltimore, MD: Williams & Wilkins;.
    [Google Scholar]
  20. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  21. Tindall B.. ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13: 128–130 [CrossRef].
    [Google Scholar]
  22. Tindall B.. ( 1990b;). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66: 199–202 [CrossRef].
    [Google Scholar]
  23. Wayne L.G., Brenner D.J., Colwell R.R., Grimont P.A.D., Kandler O., Krichevsky M.I., Moore L.H., Moore W.E.C., Murray R.G.E., other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000406
Loading
/content/journal/ijsem/10.1099/ijsem.0.000406
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error