1887

Abstract

Biological nitrogen fixation is a key process for agricultural production and environmental sustainability, but there are comparatively few studies of symbionts of tropical pasture legumes, as well as few described species of the genus , although it is the predominant rhizobial genus in the tropics. A detailed polyphasic study was conducted with two strains of the genus used in commercial inoculants for tropical pastures in Brazil, CNPSo 1112, isolated from perennial soybean (), and CNPSo 2833, from desmodium (). Based on 16S-rRNA gene phylogeny, both strains were grouped in the superclade, but were not clearly clustered with any known species. Multilocus sequence analysis of three (, and ) and five (plus and ) housekeeping genes confirmed that the strains are positioned in two distinct clades. Comparison with intergenic transcribed spacer sequences of type strains of described species of the genus showed similarity lower than 93.1 %, and differences were confirmed by BOX-PCR analysis. Nucleotide identity of three housekeeping genes with type strains of described species ranged from 88.1 to 96.2 %. Average nucleotide identity of genome sequences showed values below the threshold for distinct species of the genus ( < 90.6 %), and the value between the two strains was also below this threshold (91.2 %). Analysis of and gene sequences positioned the two strains in a clade distinct from other species of the genus . Morphophysiological, genotypic and genomic data supported the description of two novel species in the genus , sp. nov. (type strain CNPSo 1112 = SMS 303 = BR 1009 = SEMIA 6148 = LMG 28867) and sp. nov. (type strain CNPSo 2833 = CIAT 2372 = BR 2212 = SEMIA 6208 = U674 = LMG 2987).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000592
2015-12-01
2019-12-12
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/12/4424.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000592&mimeType=html&fmt=ahah

References

  1. Azevedo H., Lopes F., Silla P., Hungria M.. ( 2015;). A database for the taxonomic and phylogenetic identification of the genus Bradyrhizobium using multilocus sequence analysis. BMC Genomics 16: (Suppl. 5), S10 [CrossRef] [PubMed].
    [Google Scholar]
  2. Binde D. R., Menna P., Bangel E. V., Barcellos F. G., Hungria M.. ( 2009;). rep-PCR fingerprinting and taxonomy based on the sequencing of the 16S rRNA gene of 54 elite commercial rhizobial strains. Appl Microbiol Biotechnol 83: 897–908 [CrossRef] [PubMed].
    [Google Scholar]
  3. Chang Y. L., Wang J. Y., Wang E. T., Liu H. C., Sui X. H., Chen W. X.. ( 2011;). Bradyrhizobium lablabi sp. nov., isolated from effective nodules of Lablab purpureus and Arachis hypogaea. Int J Syst Evol Microbiol 61: 2496–2502 [CrossRef] [PubMed].
    [Google Scholar]
  4. Dall'Agnol R. F., Ribeiro R. A., Ormeño-Orrillo E., Rogel M. A., Delamuta J. R. M., Andrade D. S., Martínez-Romero E., Hungria M.. ( 2013;). Rhizobium freirei sp. nov., a symbiont of Phaseolus vulgaris that is very effective at fixing nitrogen. Int J Syst Evol Microbiol 63: 4167–4173 [CrossRef] [PubMed].
    [Google Scholar]
  5. Dall'Agnol R. F., Ribeiro R. A., Delamuta J. R. M., Ormeño-Orrillo E., Rogel M. A., Andrade D. S., Martínez-Romero E., Hungria M.. ( 2014;). Rhizobium paranaense sp. nov., an effective N2-fixing symbiont of common bean (Phaseolus vulgaris L.) with broad geographical distribution in Brazil. Int J Syst Evol Microbiol 64: 3222–3229 [CrossRef] [PubMed].
    [Google Scholar]
  6. Delamuta J. R. M., Ribeiro R. A., Menna P., Bangel E. V., Hungria M.. ( 2012;). Multilocus sequence analysis (MLSA) of Bradyrhizobium strains: revealing high diversity of tropical diazotrophic symbiotic bacteria. Braz J Microbiol 43: 698–710 [CrossRef] [PubMed].
    [Google Scholar]
  7. Delamuta J. R. M., Ribeiro R. A., Ormeño-Orrillo E., Melo I. S., Martínez-Romero E., Hungria M.. ( 2013;). Polyphasic evidence supporting the reclassification of Bradyrhizobium japonicum group Ia strains as Bradyrhizobium diazoefficiens sp. nov. Int J Syst Evol Microbiol 63: 3342–3351 [CrossRef] [PubMed].
    [Google Scholar]
  8. Durán D., Rey L., Mayo J., Zúñiga-Dávila D., Imperial J., Ruiz-Argüeso T., Martínez-Romero E., Ormeño-Orrillo E.. ( 2014a;). Bradyrhizobium paxllaeri sp. nov. and Bradyrhizobium icense sp. nov., nitrogen-fixing rhizobial symbionts of Lima bean (Phaseolus lunatus L.) in Peru. Int J Syst Evol Microbiol 64: 2072–2078 [CrossRef] [PubMed].
    [Google Scholar]
  9. Durán D., Rey L., Navarro A., Busquets A., Imperial J., Ruiz-Argüeso T.. ( 2014b;). Bradyrhizobium valentinum sp. nov. isolated from effective nodules of Lupinus mariae-josephae, a lupine endemic of basic-lime soils in Eastern Spain. Syst Appl Microbiol 37: 336–341 [CrossRef] [PubMed].
    [Google Scholar]
  10. Edgar R. C.. ( 2004;). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797 [CrossRef] [PubMed].
    [Google Scholar]
  11. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  12. Germano M. G., Menna P., Mostasso F. L., Hungria M.. ( 2006;). RFLP analysis of the rRNA operon of a Brazilian collection of bradyrhizobial strains from 33 legume species. Int J Syst Evol Microbiol 56: 217–229 [CrossRef] [PubMed].
    [Google Scholar]
  13. Gevers D., Cohan F. M., Lawrence J. G., Spratt B. G., Coenye T., Feil E. J., Stackebrandt E., Van de Peer Y., Vandamme P., Thompson F. L., Swings J.. ( 2005;). Re-evaluating prokaryotic species. Nat Rev Microbiol 3: 733–739 [CrossRef] [PubMed].
    [Google Scholar]
  14. Guerrouj K., Ruíz-Díez B., Chahboune R., Ramírez-Bahena M. H., Abdelmoumen H., Quiñones M. A., El Idrissi M. M., Velazquez E., Fernandez-Pascual M., Bedmar E. J., Peix A.. ( 2013;). Definition of a novel symbiovar (sv. retamae) within Bradyrhizobium retamae sp. nov., nodulating. Retama sphaerocarpa and Retama monosperma. Syst Appl Microbiol 36: 218–223 [CrossRef] [PubMed].
    [Google Scholar]
  15. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41: 95–98.
    [Google Scholar]
  16. Hungria M., Loureiro M. F., Mendes I. C., Campo R. J., Graham P. H.. ( 2005;). Inoculant preparation, production and application. . In Nitrogen Fixation: Origins, Applications and Research Progress, vol. 4, pp. 223–254. Edited by Newton W. E.. Dordrecht, Amsterdam: Springer;.
    [Google Scholar]
  17. Kaschuk G., Hungria M., Andrade D. S., Campo R. J.. ( 2006;). Genetic diversity of rhizobia associated with common bean (Phaseolus vulgaris L.) grown under no-tillage and conventional systems in Southern Brazil. Appl Soil Ecol 32: 210–220 [CrossRef].
    [Google Scholar]
  18. Kuykendall L. D., Saxena B., Devine T. E., Udell S. E.. ( 1992;). Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov. Can J Microbiol 38: 501–505 [CrossRef].
    [Google Scholar]
  19. Menna P., Hungria M.. ( 2011;). Phylogeny of nodulation and nitrogen-fixation genes in Bradyrhizobium: supporting evidence for the theory of monophyletic origin, and spread and maintenance by both horizontal and vertical transfer. Int J Syst Evol Microbiol 61: 3052–3067 [CrossRef] [PubMed].
    [Google Scholar]
  20. Menna P., Hungria M., Barcellos F. G., Bangel E. V., Hess P. N., Martínez-Romero E.. ( 2006;). Molecular phylogeny based on the 16S rRNA gene of elite rhizobial strains used in Brazilian commercial inoculants. Syst Appl Microbiol 29: 315–332 [CrossRef] [PubMed].
    [Google Scholar]
  21. Menna P., Barcellos F. G., Hungria M.. ( 2009a;). Phylogeny and taxonomy of a diverse collection of Bradyrhizobium strains based on multilocus sequence analysis of the 16S rRNA gene, ITS region and glnII, recA, atpD and dnaK genes. Int J Syst Evol Microbiol 59: 2934–2950 [CrossRef] [PubMed].
    [Google Scholar]
  22. Menna P., Pereira A. A., Bangel E. V., Hungria M.. ( 2009b;). rep-PCR of tropical rhizobia for strain fingerprinting, biodiversity appraisal and as a taxonomic and phylogenetic tool. Symbiosis 48: 120–130 [CrossRef].
    [Google Scholar]
  23. MIDI ( 2001;). Sherlock Microbial Identification System Operating Manual, version 4.0. Newark: MIDI, Inc;.
    [Google Scholar]
  24. Ormeño-Orrillo E., Martínez-Romero E.. ( 2013;). Phenotypic tests in Rhizobium species description: an opinion and (a sympatric speciation) hypothesis. Syst Appl Microbiol 36: 145–147 [CrossRef] [PubMed].
    [Google Scholar]
  25. Ormeño-Orrillo E., Hungria M., Martínez-Romero E.. ( 2013;). Dinitrogen-fixing prokaryotes. . In The Prokaryotes – Prokaryotic Physiology and Biochemistry, pp. 427–451 Edited by Rosenberg et al. E.. Berlin, Heidelberg: Springer-Verlag; [CrossRef].
    [Google Scholar]
  26. Ramírez-Bahena M. H., Peix A., Rivas R., Camacho M., Rodríguez-Navarro D. N., Mateos P. F., Martínez-Molina E., Willems A., Velázquez E.. ( 2009;). Bradyrhizobium pachyrhizi sp. nov. and Bradyrhizobium jicamae sp. nov., isolated from effective nodules of Pachyrhizus erosus. Int J Syst Evol Microbiol 59: 1929–1934 [CrossRef] [PubMed].
    [Google Scholar]
  27. Ribeiro R. A., Barcellos F. G., Thompson F. L., Hungria M.. ( 2009;). Multilocus sequence analysis of Brazilian Rhizobium microsymbionts of common bean (Phaseolus vulgaris L.) reveals unexpected taxonomic diversity. Res Microbiol 160: 297–306 [CrossRef] [PubMed].
    [Google Scholar]
  28. Ribeiro R. A., Rogel M. A., López-López A., Ormeño-Orrillo E., Barcellos F. G., Martínez J., Thompson F. L., Martínez-Romero E., Hungria M.. ( 2012;). Reclassification of Rhizobium tropici type A strains as Rhizobium leucaenae sp. nov. Int J Syst Evol Microbiol 62: 1179–1184 [CrossRef] [PubMed].
    [Google Scholar]
  29. Ribeiro R. A., Ormeño-Orrillo E., Dall'Agnol R. F., Graham P. H., Martínez-Romero E., Hungria M.. ( 2013;). Novel Rhizobium lineages isolated from root nodules of the common bean (Phaseolus vulgaris L.) in Andean and Mesoamerican areas. Res Microbiol 164: 740–748 [CrossRef] [PubMed].
    [Google Scholar]
  30. Ribeiro R. A., Martins T. B., Ormeño-Orrillo E., Delamuta J. R. M., Rogel M. A., Martínez-Romero E., Hungria M.. ( 2015;). Rhizobium ecuadorense sp. nov., an indigenous N2-fixing symbiont of the Ecuadorian common bean (Phaseolus vulgaris L.) genetic pool. Int J Syst Evol Microbiol 65: 3162–3169 [CrossRef] [PubMed].
    [Google Scholar]
  31. Richter M., Rosselló-Móra R.. ( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106: 19126–19131 [CrossRef] [PubMed].
    [Google Scholar]
  32. Rivas R., Martens M., de Lajudie P., Willems A.. ( 2009;). Multilocus sequence analysis of the genus Bradyrhizobium. Syst Appl Microbiol 32: 101–110 [CrossRef] [PubMed].
    [Google Scholar]
  33. Roma Neto I. V., Ribeiro R. A., Hungria M.. ( 2010;). Genetic diversity of elite rhizobial strains of subtropical and tropical legumes based on the 16S rRNA and glnII genes. World J Microbiol Biotechnol 26: 1291–1302 [CrossRef] [PubMed].
    [Google Scholar]
  34. Tamura K., Nei M.. ( 1993;). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10: 512–526 [PubMed].
    [Google Scholar]
  35. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  36. Thompson F. L., Gevers D., Thompson C. C., Dawyndt P., Naser S., Hoste B., Munn C. B., Swings J.. ( 2005;). Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. Appl Environ Microbiol 71: 5107–5115 [CrossRef] [PubMed].
    [Google Scholar]
  37. Tighe S. W., de Lajudie P., Dipietro K., Lindström K., Nick G., Jarvis B. D. W.. ( 2000;). Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 50: 787–801 [CrossRef] [PubMed].
    [Google Scholar]
  38. Vincent J. M.. ( 1970;). Manual for the Practical Study of Root Nodule Bacteria (IBP Handbook no. 15) Oxford: Blackwell Scientific;.
    [Google Scholar]
  39. Wang E. T., Martínez-Romero E.. ( 2000;). Phylogeny of root- and stem nodule bacteria associated with legumes. . In Prokaryotic Nitrogen Fixation: a Model System for Analysis of a Biological Process, pp. 177–186. Edited by Triplett E. W.. Wymondham, UK: Horizon Scientific;.
    [Google Scholar]
  40. Willems A., Coopman R., Gillis M.. ( 2001;). Comparison of sequence analysis of 16S-23S rDNA spacer regions, AFLP analysis and DNA-DNA hybridizations in Bradyrhizobium. Int J Syst Evol Microbiol 51: 623–632 [CrossRef] [PubMed].
    [Google Scholar]
  41. Willems A., Munive A., de Lajudie P., Gillis M.. ( 2003;). In most Bradyrhizobium groups sequence comparison of 16S-23S rDNA internal transcribed spacer regions corroborates DNA-DNA hybridizations. Syst Appl Microbiol 26: 203–210 [CrossRef] [PubMed].
    [Google Scholar]
  42. Xu L. M., Ge C., Cui Z., Li J., Fan H.. ( 1995;). Bradyrhizobium liaoningense sp. nov., isolated from the root nodules of soybeans. Int J Syst Bacteriol 45: 706–711 [CrossRef] [PubMed].
    [Google Scholar]
  43. Yao Y., Sui X. H., Zhang X. X., Wang E. T., Chen W. X.. ( 2015;). Bradyrhizobium erythrophlei sp. nov. and Bradyrhizobium ferriligni sp. nov., isolated from effective nodules of Erythrophleum fordii. Int J Syst Evol Microbiol 65: 1831–1837 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000592
Loading
/content/journal/ijsem/10.1099/ijsem.0.000592
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error