1887

Abstract

A motile, Gram-stain-negative, non-pigmented bacterial strain, designated MGL06, was isolated from seawater of the South China Sea on selection medium containing 0.1 % (w/v) malachite green. Strain MGL06 showed highest 16S rRNA gene sequence similarity to CCBAU 05176 (97.2 %), and shared 93.2–96.9 % with the type strains of other recognized species. Phylogenetic analyses based on 16S rRNA and housekeeping gene sequences showed that strain MGL06 belonged to the genus . Mean levels of DNA–DNA relatedness between strain MGL06 and CCBAU 05176, S02 and CCBAU 01393 were 20 ± 3, 18 ± 2 and 14 ± 3 %, respectively, indicating that strain MGL06 was distinct from them genetically. Strain MGL06 did not form nodules on three different legumes, and the and genes were also not detected by PCR or based on the draft genome sequence. Strain MGL06 contained Q-10 as the predominant ubiquinone. The major fatty acid was Cω7/Cω6 with minor amounts of C cyclo ω8, C and Cω7 11-methyl. Polar lipids of strain MGL06 included unknown glycolipids, phosphatidylcholine, aminolipid, phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, an unknown polar lipid and aminophospholipid. Based on its phenotypic and genotypic data, strain MGL06 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is MGL06 ( = MCCC 1A00836 = JCM 30155).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000593
2015-12-01
2019-09-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/12/4449.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000593&mimeType=html&fmt=ahah

References

  1. Berge O., Lodhi A., Brandelet G., Santaella C., Roncato M. A., Christen R., Heulin T., Achouak W.. ( 2009;). Rhizobium alamii sp. nov., an exopolysaccharide-producing species isolated from legume and non-legume rhizospheres. Int J Syst Evol Microbiol 59: 367–372 [CrossRef] [PubMed].
    [Google Scholar]
  2. Chen C. H., Chang C. F., Liu S. M.. ( 2010;). Partial degradation mechanisms of malachite green and methyl violet B by Shewanella decolorationis NTOU1 under anaerobic conditions. J Hazard Mater 177: 281–289 [CrossRef] [PubMed].
    [Google Scholar]
  3. Chun J., Goodfellow M.. ( 1995;). A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 45: 240–245 [CrossRef] [PubMed].
    [Google Scholar]
  4. Coram N. J., Rawlings D. E.. ( 2002;). Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 40°C. Appl Environ Microbiol 68: 838–845 [CrossRef] [PubMed].
    [Google Scholar]
  5. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  6. Frank B.. ( 1889;). Über die Pilzsymbiose der Leguminosen. Ber Dtsch Bot Ges 7: 332–346 (in German).
    [Google Scholar]
  7. Graham P. H., Sadowsky M. J., Keyser H. H., Barnet Y. M., Bradley R. S., Cooper J. E., De Ley D. J., Jarvis B.D.W., Roslycky E. B., other authors. ( 1991;). Proposed minimal standards for the description of new genera and species of root- and stem-nodulating bacteria. Int J Syst Bacteriol 41: 582–587 [CrossRef].
    [Google Scholar]
  8. Gu T., Sun L. N., Zhang J., Sui X. H., Li S. P.. ( 2014;). Rhizobium flavum sp. nov., a triazophos-degrading bacterium isolated from soil under the long-term application of triazophos. Int J Syst Evol Microbiol 64: 2017–2022 [CrossRef] [PubMed].
    [Google Scholar]
  9. Kates M.. ( 1986;). Techniques of Lipidology a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  10. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19: 161–207 [CrossRef].
    [Google Scholar]
  11. Liu Y., Wang R., Zeng R.. ( 2014;). Permanent draft genome of the malachite-green-tolerant bacterium Rhizobium sp. MGL06. Mar Genomics 18: (Pt B), 87–88 [CrossRef] [PubMed].
    [Google Scholar]
  12. Mnasri B., Liu T. Y., Saidi S., Chen W. F., Chen W. X., Zhang X. X., Mhamdi R.. ( 2014;). Rhizobium azibense sp. nov., a nitrogen fixing bacterium isolated from root-nodules of Phaseolus vulgaris. Int J Syst Evol Microbiol 64: 1501–1506 [CrossRef] [PubMed].
    [Google Scholar]
  13. Rzhetsky A., Nei M.. ( 1992;). Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol 35: 367–375 [CrossRef] [PubMed].
    [Google Scholar]
  14. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  15. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  16. Tønjum T., Welty D. B., Jantzen E., Small P. L.. ( 1998;). Differentiation of Mycobacterium ulcerans, M. marinum, and M. haemophilum: mapping of their relationships to M. tuberculosis by fatty acid profile analysis, DNA–DNA hybridization, and 16S rRNA gene sequence analysis. J Clin Microbiol 36: 918–925 [PubMed].
    [Google Scholar]
  17. Turdahon M., Osman G., Hamdun M., Yusuf K., Abdurehim Z., Abaydulla G., Abdukerim M., Fang C., Rahman E.. ( 2013;). Rhizobium tarimense sp. nov., isolated from soil in the ancient Khiyik River. Int J Syst Evol Microbiol 63: 2424–2429 [CrossRef] [PubMed].
    [Google Scholar]
  18. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P.A.D., Kandler O., Krichevsky M. I., Moore L. H., Moore W.E.C., Murray R.G.E., other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  19. Xu H., Fu Y., Yang N., Ding Z., Lai Q., Zeng R.. ( 2012;). Flammeovirga pacifica sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 62: 937–941 [CrossRef] [PubMed].
    [Google Scholar]
  20. Yoon J. H., Kang S. J., Yi H. S., Oh T. K., Ryu C. M.. ( 2010;). Rhizobium soli sp. nov., isolated from soil. Int J Syst Evol Microbiol 60: 1387–1393 [CrossRef] [PubMed].
    [Google Scholar]
  21. Young J. M., Kuykendall L. D., Martínez-Romero E., Kerr A., Sawada H.. ( 2001;). A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int J Syst Evol Microbiol 51: 89–103 [CrossRef] [PubMed].
    [Google Scholar]
  22. Zhang G. X., Ren S. Z., Xu M. Y., Zeng G. Q., Luo H. D., Chen J. L., Tan Z. Y., Sun G. P.. ( 2011;). Rhizobium borbori sp. nov., aniline-degrading bacteria isolated from activated sludge. Int J Syst Evol Microbiol 61: 816–822 [CrossRef] [PubMed].
    [Google Scholar]
  23. Zhang X., Li B., Wang H., Sui X., Ma X., Hong Q., Jiang R.. ( 2012;). Rhizobium petrolearium sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 62: 1871–1876 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000593
Loading
/content/journal/ijsem/10.1099/ijsem.0.000593
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error