1887

Abstract

A Gram-stain-negative, non-spore-forming, rod-shaped and aerobic bacterium, designated Xi19, was isolated from a soil sample collected from the rhizosphere of sunflower () in Wuyuan county of Inner Mongolia, China and was characterized taxonomically by using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the novel isolate was related to species of the genus , sharing the greatest 16S rRNA gene sequence similarity with J3-AN59 (98.4 %), followed by J3-A127 (97.4 %). There were low similarities ( < 91 %) between the , and gene sequences of the novel strain and those of members of the genus . DNA–DNA hybridization values between strain Xi19 and the most related strain J3-AN59 were low. The major cellular fatty acids of strain Xi19 were C, summed feature 8 (Cω7 and/or Cω6) and C cyclo ω8. Q-10 was identified as the predominant ubiquinone and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine. The DNA G+C content of strain Xi19 was 60.2 mol%. On the basis of physiological and biochemical characteristics, coupled with genotypic data obtained in this work, strain Xi19 represents a novel species of the genus , for which the name is proposed. The type strain is Xi19 ( = CGMCC 1.12192 = KCTC 23879).

Funding
This study was supported by the:
  • Beijing Natural Science Foundation (Award 5152017)
  • Special Fund for Public Welfare Industrial (Agriculture) Research of China (Award 200903001)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000594
2015-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/12/4455.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000594&mimeType=html&fmt=ahah

References

  1. De Ley J., Cattoir H., Reynaerts A. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12 133142 [View Article] [PubMed].
    [Google Scholar]
  2. Dong X. Z., Cai M. Y. ( 2001). Determinative Manual for Routine Bacteriology Beijing: Scientific Press (English translation);.
    [Google Scholar]
  3. Gao J. L., Sun J. G., Li Y., Wang E. T., Chen W. X. ( 1994;). Numerical taxonomy and DNA relatedness of tropical rhizobia isolated from Hainan province, China. Int J Syst Bacteriol 44 151158 [View Article].
    [Google Scholar]
  4. Gaunt M. W., Turner S. L., Rigottier-Gois L., Lloyd-Macgilp S. A., Young J. P. W. ( 2001;). Phylogenies of atpD, recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 51 20372048 [View Article] [PubMed].
    [Google Scholar]
  5. Graham P. H., Sadowsky M. J., Keyser H. H., Barnet Y. M., Bradley R. S., Cooper J. E., De Ley D. J., Jarvis B. D. W., Roslycky E. B., other authors. ( 1991;). Proposed minimal standards for the description of new genera and species of root- and stem-nodulating bacteria. Int J Syst Bacteriol 41 582587 [View Article].
    [Google Scholar]
  6. Jordan D. C. ( 1984;). Genus I. Rhizobium Frank 1889, 338AL . . In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 235242. Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;.
    [Google Scholar]
  7. Kämpfer P., Kroppenstedt R. M. ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42 9891005 [View Article].
    [Google Scholar]
  8. Kimura M. ( 1980). The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press;.
    [Google Scholar]
  9. Komagata K., Suzuki K. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19 161207 [View Article].
    [Google Scholar]
  10. Kuykendall L. D., Young J. M., Martínez-Romero E., Kerr A., Sawada H. ( 2005;). Genus I. Rhizobium . . In Bergey's Manual of Systematic Bacteriology, vol. 2, pp. 325340. Edited by Garrity G. M., Brenner D. J., Krieg N. R., Staley J. R. New York: Springer;. [CrossRef]
    [Google Scholar]
  11. Marmur J. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3 208218 [View Article].
    [Google Scholar]
  12. Marmur J., Doty P. ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5 109118 [View Article] [PubMed].
    [Google Scholar]
  13. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2 233241 [View Article].
    [Google Scholar]
  14. Parte A. C. ( 2014;). LPSN–List of Prokaryotic Names with Standing in Nomenclature. Nucleic Acids Res 42 (D1), D613D616 [View Article] [PubMed].
    [Google Scholar]
  15. Peng G., Yuan Q., Li H., Zhang W., Tan Z. ( 2008;). Rhizobium oryzae sp. nov., isolated from the wild rice Oryza alta . Int J Syst Evol Microbiol 58 21582163 [View Article] [PubMed].
    [Google Scholar]
  16. Quan Z. X., Bae H. S., Baek J. H., Chen W. F., Im W. T., Lee S. T. ( 2005;). Rhizobium daejeonense sp. nov. isolated from a cyanide treatment bioreactor. Int J Syst Evol Microbiol 55 25432549 [View Article] [PubMed].
    [Google Scholar]
  17. Ramana Ch.V., Parag B., Girija K. R., Ram B. R., Ramana V. V., Sasikala Ch. ( 2013;). Rhizobium subbaraonis sp. nov., an endolithic bacterium isolated from beach sand. Int J Syst Evol Microbiol 63 581585 [View Article] [PubMed].
    [Google Scholar]
  18. Rivas R., Velázquez E., Willems A., Vizcaíno N., Subba-Rao N. S., Mateos P. F., Gillis M., Dazzo F. B., Martínez-Molina E. ( 2002;). A new species of Devosia that forms a unique nitrogen-fixing root-nodule symbiosis with the aquatic legume Neptunia natans (L.f.) druce. Appl Environ Microbiol 68 52175222 [View Article] [PubMed].
    [Google Scholar]
  19. Sasser M. ( 1990). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  20. Schutter M. E., Dick R. P. ( 2000;). Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Sci Soc Am J 64 16591668 [View Article].
    [Google Scholar]
  21. Tamura K., Dudley J., Nei M., Kumar S. ( 2007;). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24 15961599 [View Article] [PubMed].
    [Google Scholar]
  22. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25 48764882 [View Article] [PubMed].
    [Google Scholar]
  23. Tighe S. W., de Lajudie P., Dipietro K., Lindström K., Nick G., Jarvis B. D. ( 2000;). Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 50 787801 [View Article] [PubMed].
    [Google Scholar]
  24. Turdahon M., Osman G., Hamdun M., Yusuf K., Abdurehim Z., Abaydulla G., Abdukerim M., Fang C., Rahman E. ( 2013;). Rhizobium tarimense sp. nov., isolated from soil in the ancient Khiyik River. Int J Syst Evol Microbiol 63 24242429 [View Article] [PubMed].
    [Google Scholar]
  25. Turner S. L., Young J. P. W. ( 2000;). The glutamine synthetases of rhizobia: phylogenetics and evolutionary implications. Mol Biol Evol 17 309319 [View Article] [PubMed].
    [Google Scholar]
  26. Valverde A., Igual J. M., Peix A., Cervantes E., Velázquez E. ( 2006;). Rhizobium lusitanum sp. nov. a bacterium that nodulates Phaseolus vulgaris . Int J Syst Evol Microbiol 56 26312637 [View Article] [PubMed].
    [Google Scholar]
  27. Vincent J. M. ( 1970;). The cultivation, isolation and maintenance of rhizobia. . In A Manual for the Practical Study of the Root-Nodule Bacteria, pp. 113. Edited by Vincent J. M. Oxford: Blackwell Scientific;.
    [Google Scholar]
  28. Vinuesa P., Silva C., Lorite M. J., Izaguirre-Mayoral M. L., Bedmar E. J., Martínez-Romero E. ( 2005a;). Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs, atpD, recA and nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. Syst Appl Microbiol 28 702716 [View Article] [PubMed].
    [Google Scholar]
  29. Vinuesa P., Silva C., Werner D., Martínez-Romero E. ( 2005b;). Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol Phylogenet Evol 34 2954 [View Article] [PubMed].
    [Google Scholar]
  30. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37 463464 [View Article].
    [Google Scholar]
  31. Wei G. H., Tan Z. Y., Zhu M. E., Wang E. T., Han S. Z., Chen W. X. ( 2003;). Characterization of rhizobia isolated from legume species within the genera Astragalus and Lespedeza grown in the Loess Plateau of China and description of Rhizobium loessense sp. nov. Int J Syst Evol Microbiol 53 15751583 [View Article] [PubMed].
    [Google Scholar]
  32. Xu P., Li W. J., Tang S. K., Zhang Y. Q., Chen G. Z., Chen H. H., Xu L. H., Jiang C. L. ( 2005;). Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 55 11491153 [View Article] [PubMed].
    [Google Scholar]
  33. Yoon J.-H., Kim H., Kim S.-B., Kim H.-J., Kim W. Y., Lee S. T., Goodfellow M., Park Y.-H. ( 1996;). Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 46 502505 [View Article].
    [Google Scholar]
  34. Yoon J.-H., Lee S. T., Park Y.-H. ( 1998;). Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int J Syst Bacteriol 48 187194 [View Article] [PubMed].
    [Google Scholar]
  35. Yoon J.-H., Kim I.-G., Shin D.-Y., Kang K. H., Park Y.-H. ( 2003;). Microbulbifer salipaludis sp. nov., a moderate halophile isolated from a Korean salt marsh. Int J Syst Evol Microbiol 53 5357 [View Article] [PubMed].
    [Google Scholar]
  36. Yoon J. H., Kang S. J., Yi H. S., Oh T. K., Ryu C. M. ( 2010;). Rhizobium soli sp. nov., isolated from soil. Int J Syst Evol Microbiol 60 13871393 [View Article] [PubMed].
    [Google Scholar]
  37. Zhang G. X., Ren S. Z., Xu M. Y., Zeng G. Q., Luo H. D., Chen J. L., Tan Z. Y., Sun G. P. ( 2011a;). Rhizobium borbori sp. nov., aniline-degrading bacteria isolated from activated sludge. Int J Syst Evol Microbiol 61 816822 [View Article] [PubMed].
    [Google Scholar]
  38. Zhang X., Sun L., Ma X., Sui X. H., Jiang R. ( 2011b;). Rhizobium pseudoryzae sp. nov., isolated from the rhizosphere of rice. Int J Syst Evol Microbiol 61 24252429 [View Article] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000594
Loading
/content/journal/ijsem/10.1099/ijsem.0.000594
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error