1887

Abstract

A Gram-stain-negative, aerobic, yellow-pigmented and rod-shaped bacterium with a single polar flagellum or a stalk, designated strain RHGG3, was isolated from rhizosphere soil of cultivated watermelon () collected from Hefei, China. Optimal growth of strain RHGG3 was observed at pH 7.0 and 28–30 °C. Cells were catalase-positive and oxidase-negative. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain RHGG3 belonged to the genus and showed the highest 16S rRNA gene sequence similarities to ATCC 21756 (98.6 %), CB51 (98.3 %) and ATCC 15253 (97.2 %). The G+C content of the genomic DNA was 70 mol%. Strain RHGG3 contained Q-10 as the sole ubiquinone and the major fatty acids (>8 %) were 11-methyl Cω7, Cω7, C, C and summed feature 3 (Cω7 and/or iso-C 2-OH). The polar lipids were various unknown glycolipids, phosphatidylglycerol and phosphoglycolipids. DNA–DNA relatedness of strain RHGG3 to type strains of the most closely related species ( ATCC 21756, DSM 4738 and ATCC 15253) was 32.4–40.9 %. Based on polyphasic taxonomy analysis (phylogenetic, unique phenotypic traits, chemotaxonomic and DNA–DNA hybridizations), strain RHGG3 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is RHGG3 ( = CGMCC 1.15093 = KCTC 42581 = JCM 30763).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000585
2015-12-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/12/4374.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000585&mimeType=html&fmt=ahah

References

  1. Abraham W.-R., Strömpl C., Meyer H., Lindholst S., Moore E. R. B., Christ R., Vancanneyt M., Tindall B. J., Bennasar A., other authors. ( 1999;). Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter. Int J Syst Bacteriol 49: 1053–1073 [CrossRef] [PubMed].
    [Google Scholar]
  2. Abraham W.-R., Macedo A. J., Lünsdorf H., Fischer R., Pawelczyk S., Smit J., Vancanneyt M.. ( 2008;). Phylogeny by a polyphasic approach of the order Caulobacterales, proposal of Caulobacter mirabilis sp. nov., Phenylobacterium haematophilum sp. nov. and Phenylobacterium conjunctum sp. nov., and emendation of the genus Phenylobacterium. Int J Syst Evol Microbiol 58: 1939–1949 [CrossRef] [PubMed].
    [Google Scholar]
  3. Albuquerque L., Santos J., Travassos P., Nobre M. F., Rainey F. A., Wait R., Empadinhas N., Silva M. T., da Costa M. S.. ( 2002;). Albidovulum inexpectatum gen. nov., sp. nov., a nonphotosynthetic and slightly thermophilic bacterium from a marine hot spring that is very closely related to members of the photosynthetic genus Rhodovulum. Appl Environ Microbiol 68: 4266–4273 [CrossRef] [PubMed].
    [Google Scholar]
  4. Berestovskaya Y. Y., Lysenko A. M., Tourova T. P., Vasil'eva L. V.. ( 2006;). A psychrotolerant Caulobacter sp. from Russian polar tundra soil. Microbiology (English translation of Mikrobiologiya) 75: 317–322 [CrossRef].
    [Google Scholar]
  5. Bowers L. E., Weaver R. H., Grula E. A., Edwards O. F.. ( 1954;). Studies on a strain of Caulobacter from water. I. Isolation and identification as Caulobacter vibrioides Henrici and Johnson with emended description. J Bacteriol 68: 194–200 [PubMed].
    [Google Scholar]
  6. Chen H., Jogler M., Rohde M., Klenk H. P., Busse H. J., Tindall B. J., Spröer C., Overmann J.. ( 2012;). Reclassification and emended description of Caulobacter leidyi as Sphingomonas leidyi comb. nov., and emendation of the genus Sphingomonas. Int J Syst Evol Microbiol 62: 2835–2843 [CrossRef] [PubMed].
    [Google Scholar]
  7. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12: 133–142 [CrossRef] [PubMed].
    [Google Scholar]
  8. Dong X., Xin Y., Jian W., Liu X., Ling D.. ( 2000;). Bifidobacterium thermacidophilum sp. nov., isolated from an anaerobic digester. Int J Syst Evol Microbiol 50: 119–125 [CrossRef] [PubMed].
    [Google Scholar]
  9. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  10. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  11. Henrici A. T., Johnson D. E.. ( 1935;). Studies of freshwater bacteria. II. Stalked bacteria, a new order of Schizomycetes. J Bacteriol 30: 61–93 [PubMed].
    [Google Scholar]
  12. Huang Z., Sheng X. F., Zhao F., He L. Y., Huang J., Wang Q.. ( 2012;). Isoptericola nanjingensis sp. nov., a mineral-weathering bacterium. Int J Syst Evol Microbiol 62: 971–976 [CrossRef] [PubMed].
    [Google Scholar]
  13. Jin L., Lee H. G., Kim H. S., Ahn C. Y., Oh H. M.. ( 2013;). Caulobacter daechungensis sp. nov., a stalked bacterium isolated from a eutrophic reservoir. Int J Syst Evol Microbiol 63: 2559–2564 [CrossRef] [PubMed].
    [Google Scholar]
  14. Jin L., La H. J., Lee H. G., Lee J. J., Lee S., Ahn C. Y., Oh H. M.. ( 2014;). Caulobacter profunda sp. nov., isolated from deep freshwater sediment. Int J Syst Evol Microbiol 64: 762–767 [CrossRef] [PubMed].
    [Google Scholar]
  15. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  16. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120 [CrossRef] [PubMed].
    [Google Scholar]
  17. Kuykendall L. D., Roy M. A., O'Neill J. J., Devine T. E.. ( 1988;). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38: 358–361 [CrossRef].
    [Google Scholar]
  18. Lányí B.. ( 1987;). Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19: 1–67 [CrossRef].
    [Google Scholar]
  19. Liu Q.-M., Ten L. N., Im W.-T., Lee S.-T., Yoon M.-H.. ( 2010;). Caulobacter ginsengisoli sp. nov., a novel stalked bacterium isolated from ginseng cultivating soil. J Microbiol Biotechnol 20: 15–20 [PubMed].
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  21. Miller L. T.. ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16: 584–586 [PubMed].
    [Google Scholar]
  22. Poindexter J. S.. ( 1964;). Biological properties and classification of the Caulobacter group. Bacteriol Rev 28: 231–295 [PubMed].
    [Google Scholar]
  23. Poindexter J. S., Lewis R. F.. ( 1966;). Recommendations for revision of the taxonomic treatment of stalked bacteria. Int J Syst Bacteriol 16: 377–382 [CrossRef].
    [Google Scholar]
  24. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  25. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  26. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  27. Tindall B. J.. ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13: 128–130 [CrossRef].
    [Google Scholar]
  28. Tindall B. J.. ( 1990b;). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66: 199–202 [CrossRef].
    [Google Scholar]
  29. Urakami T., Oyanagi H., Araki H., Suzuki K., Komagata K.. ( 1990;). Recharacterization and emended description of the genus Mycoplana and description of two new species, Mycoplana ramosa and Mycoplana segnis. Int J Syst Bacteriol 40: 434–442 [CrossRef].
    [Google Scholar]
  30. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000585
Loading
/content/journal/ijsem/10.1099/ijsem.0.000585
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error