-
Volume 153,
Issue 12,
2007
Volume 153, Issue 12, 2007
- Mini-Review
-
-
-
Making sense of quorum sensing in lactobacilli: a special focus on Lactobacillus plantarum WCFS1
More LessIn silico identification criteria were defined to predict if genes encoding histidine protein kinases (HPKs) and response regulators (RRs) could be part of peptide-based quorum sensing (QS) two-component regulatory systems (QS-TCSs) in Firmicutes. These criteria were used to screen HPKs and RRs annotated on the completed genome sequences of Lactobacillus species, and several (putative) QS-TCSs were identified in this way. The five peptide-based QS-TCSs that were predicted on the Lactobacillus plantarum WCFS1 genome were further analysed to test their (QS) functionality. Four of these systems contained an upstream gene encoding a putative autoinducing peptide (AIP), of which two were preceded by a double-glycine-type leader peptide. One of these was identical to the plnABCD regulatory system of L. plantarum C11 and was shown to regulate plantaricin production in L. plantarum WCFS1. The third TCS was designated lamBDCA for Lactobacillus agr-like module, where the lamD gene was shown to encode a cyclic thiolactone peptide. The fourth TCS was paralogous to the lam system and contained a putative AIP-encoding gene but lacked the lamB gene. Finally, a genetically separated orphan HPK and RR that showed clear peptide-based QS characteristics could form a fifth peptide-based QS-TCS. The predicted presence of multiple (peptide-based) QS-TCSs in some lactobacilli and in particular in L. plantarum might be a reflection of the ability of these species to persist in a diverse range of ecological niches.
-
-
-
-
The role of protein secretion systems in the virulence of the intracellular pathogen Legionella pneumophila
More LessLegionella pneumophila is a Gram-negative facultative intracellular pathogen, which multiplies in protozoa in its natural environment and can cause Legionnaires' disease in man, following infection of alveolar macrophages. In each of the different stages of infection of host cells, virulence proteins need to be delivered to their specific place of action and therefore must cross two barriers: the inner and the outer membrane. To date, several specialized secretion machineries for transport of proteins across the inner and outer membrane have been identified in L. pneumophila. Most of these secretion pathways have been shown to affect the virulence of this pathogen. An overview will be given of all the secretion pathways and the proteins transported by these secretion systems identified so far, with special attention paid to those that play a role in the pathogenicity of L. pneumophila.
-
- Sgm Special Lecture
-
-
-
Quorum sensing, communication and cross-kingdom signalling in the bacterial world
More LessAlthough unicellular, bacteria are highly interactive and employ a range of cell-to-cell communication or ‘quorum sensing (QS)’ systems for promoting collective behaviour within a population. QS is generally considered to facilitate gene expression only when the population has reached a sufficient cell density and depends on the synthesis of small molecules that diffuse in and out of bacterial cells. As the bacterial population density increases, so does the synthesis of QS signal molecules and consequently, their concentration in the external environment increases. Once a critical threshold concentration is reached, a target sensor kinase or response regulator is activated, so facilitating the expression of QS-dependent target genes. Several chemically distinct families of QS signal molecules have been described, of which the N-acylhomoserine lactone (AHL) family in Gram-negative bacteria have been the most intensively investigated. QS contributes to environmental adaptation by facilitating the elaboration of virulence determinants in pathogenic species and plant biocontrol characteristics in beneficial species as well as directing biofilm formation and colony escape. QS also crosses the prokaryotic–eukaryotic boundary in that QS signal molecules influence the behaviour of eukaryotic organisms in both the plant and mammalian worlds such that QS signal molecules may directly facilitate bacterial survival by promoting an advantageous lifestyle within a given environmental niche.
-
-
- Cell And Developmental Biology
-
-
-
The voltage-gated Na+ channel NaVBP co-localizes with methyl-accepting chemotaxis protein at cell poles of alkaliphilic Bacillus pseudofirmus OF4
NaVBP, found in alkaliphilic Bacillus pseudofirmus OF4, is a member of the bacterial voltage-gated Na+ channel superfamily. The alkaliphile requires NaVBP for normal chemotaxis responses and for optimal pH homeostasis during a shift to alkaline conditions at suboptimally low Na+ concentrations. We hypothesized that interaction of NaVBP with one or more other proteins in vivo, specifically methyl-accepting chemotaxis proteins (MCPs), is involved in activation of the channel under the pH conditions that exist in the extremophile and could underpin its role in chemotaxis; MCPs transduce chemotactic signals and generally localize to cell poles of rod-shaped cells. Here, immunofluorescence microscopy and fluorescent protein fusion studies showed that an alkaliphile protein (designated McpX) that cross-reacts with antibodies raised against Bacillus subtilis McpB co-localizes with NaVBP at the cell poles of B. pseudofirmus OF4. In a mutant in which NaVBP-encoding ncbA is deleted, the content of McpX was close to the wild-type level but McpX was significantly delocalized. A mutant of B. pseudofirmus OF4 was constructed in which cheAW expression was disrupted to assess whether this mutation impaired polar localization of McpX, as expected from studies in Escherichia coli and Salmonella, and, if so, whether NaVBP would be similarly affected. Polar localization of both McpX and NaVBP was decreased in the cheAW mutant. The results suggest interactions between McpX and NaVBP that affect their co-localization. The inverse chemotaxis phenotype of ncbA mutants may result in part from MCP delocalization.
-
-
- Biochemistry And Molecular Biology
-
-
-
Role of the methylcitrate cycle in propionate metabolism and detoxification in Mycobacterium smegmatis
More LessCatabolism of odd-chain-length fatty acids yields acetyl-CoA and propionyl-CoA. A common pathway of propionyl-CoA metabolism in micro-organisms is the methylcitrate cycle, which includes the dedicated enzymes methylcitrate synthase (MCS), methylcitrate dehydratase (MCD) and methylisocitrate lyase (MCL). The methylcitrate cycle is essential for propionate metabolism in Mycobacterium tuberculosis. Unusually, M. tuberculosis lacks an MCL orthologue and this activity is provided instead by two isoforms of the glyoxylate cycle enzyme isocitrate lyase (ICL1 and ICL2). These bifunctional (ICL/MCL) enzymes are jointly required for propionate metabolism and for growth and survival in mice. In contrast, the non-pathogenic species Mycobacterium smegmatis encodes a canonical MCL enzyme in addition to ICL1 and ICL2. The M. smegmatis gene encoding MCL (prpB) is clustered with genes encoding MCS (prpC) and MCD (prpD). Here we show that deletion of the M. smegmatis prpDBC locus reduced but did not eliminate MCL activity in cell-free extracts. The residual MCL activity was abolished by deletion of icl1 and icl2 in the ΔprpDBC background, suggesting that these genes encode bifunctional ICL/MCL enzymes. A ΔprpB Δicl1 Δicl2 mutant was unable to grow on propionate or mixtures of propionate and glucose. We hypothesize that incomplete propionyl-CoA metabolism might cause toxic metabolites to accumulate. Consistent with this idea, deletion of prpC and prpD in the ΔprpB Δicl1 Δicl2 background paradoxically restored growth on propionate-containing media. These observations suggest that the marked attenuation of ICL1/ICL2-deficient M. tuberculosis in mice could be due to the accumulation of toxic propionyl-CoA metabolites, rather than inability to utilize fatty acids per se.
-
-
-
-
Role of the C-terminal region of dextransucrase from Leuconostoc mesenteroides IBT-PQ in cell anchoring
More LessdsrP, a gene that encodes a cell-associated dextransucrase produced by Leuconostoc mesenteroides IBT-PQ, was isolated, sequenced and expressed in Escherichia coli. From sequence analysis, seven repeat units in the N-terminal region were found, as well as five cell wall binding repeats in the C-terminal region. A model of the C-terminal domain of dextransucrase was built based on the solenoid structure of the cell wall binding domain already described in LytA. By experiments involving direct interactions of the enzyme with L. mesenteroides cells, as well as among the cells and the single C-terminal domain expressed in E. coli, evidence was obtained concerning the anchoring function of this region in cell-associated dextransucrase, a function which may be independent of its capacity to bind dextran.
-
-
-
Phylogenetic and biochemical characterization of a novel cluster of intracellular fungal α-amylase enzymes
More LessCurrently known fungal α-amylases are well-characterized extracellular enzymes that are classified into glycoside hydrolase subfamily GH13_1. This study describes the identification, and phylogenetic and biochemical analysis of novel intracellular fungal α-amylases. The phylogenetic analysis shows that they cluster in the recently identified subfamily GH13_5 and display very low similarity to fungal α-amylases of family GH13_1. Homologues of these intracellular enzymes are present in the genome sequences of all filamentous fungi studied, including ascomycetes and basidiomycetes. One of the enzymes belonging to this new group, Amy1p from Histoplasma capsulatum, has recently been functionally linked to the formation of cell wall α-glucan. To study the biochemical characteristics of this novel cluster of α-amylases, we overexpressed and purified a homologue from Aspergillus niger, AmyD, and studied its activity product profile with starch and related substrates. AmyD has a relatively low hydrolysing activity on starch (2.2 U mg−1), producing mainly maltotriose. A possible function of these enzymes in relation to cell wall α-glucan synthesis is discussed.
-
-
-
A novel role for the yeast protein kinase Dbf2p in vacuolar H+-ATPase function and sorbic acid stress tolerance
More LessIn Saccharomyces cerevisiae, the serine-threonine protein kinase activity of Dbf2p is required for tolerance to the weak organic acid sorbic acid. Here we show that Dbf2p is required for normal phosphorylation of the vacuolar H+-ATPase (V-ATPase) A and B subunits Vma1p and Vma2p. Loss of V-ATPase activity due to bafilomycin treatment or deletion of either VMA1 or VMA2 resulted in sorbic acid hypersensitivity and impaired vacuolar acidification, phenotypes also observed in both a kinase-inactive dbf2 mutant and cells completely lacking DBF2 (dbf2Δ). Crucially, VMA2 is a multicopy suppressor of both the sorbic acid-sensitive phenotype and the impaired vacuolar-acidification defect of dbf2Δ cells, confirming a functional interaction between Dbf2p and Vma2p. The yeast V-ATPase is therefore involved in mediating sorbic acid stress tolerance, and we have shown a novel and unexpected role for the cell cycle-regulated protein kinase Dbf2p in promoting V-ATPase function.
-
-
-
Characterization of the mycobacterial chromosome segregation protein ParB and identification of its target in Mycobacterium smegmatis
Bacterial chromosomes (though not Escherichia coli and some other γ-proteobacterial chromosomes) contain parS sequences and parAB genes encoding partitioning proteins, i.e. ParA (ATPase) and ParB (DNA-binding proteins) that are components of the segregation machinery. Here, mycobacterial parABS elements were characterized for the first time. parAB genes are not essential in Mycobacterium smegmatis; however, elimination or overexpression of ParB protein causes growth inhibition. Deletion of parB also leads to a rather severe chromosome segregation defect: up to 10 % of the cells were anucleate. Mycobacterial ParB protein uses three oriC-proximal parS sequences as targets to organize the origin region into a compact nucleoprotein complex. Formation of such a complex involves ParB–ParB interactions and is assisted by ParA protein.
-
-
-
Consequences of a sortase A mutation in Streptococcus gordonii
Sortase A (SrtA) is required for cell-wall anchoring of LPXTG-containing Gram-positive surface proteins. It was hypothesized, therefore, that disruption of the srtA gene would alter surface anchoring and functions of target LPXTG motif-bearing SspA and SspB proteins of Streptococcus gordonii. Mutant strains in srtA (V288srtA −, DL1srtA− ) were constructed in S. gordonii V288 (wtV288) and DL1 (wtDL1). When compared to wtV288, the V288srtA− mutant showed decreased biofilm formation on polystyrene, and reduced binding to immobilized purified salivary agglutinin (BIAcore analysis). The wtV288 and V288srtA− strains were similar in ultrastructure, but immunogold-labelled SspA/SspB surface expression was reduced on the V288srtA− mutant. DL1srtA− was also complemented to obtain DL1srtA+ . From the wild-type strains (wtV288, wtDL1), srtA− mutants (V288srtA− , DL1srtA− ), and the complemented mutant (DL1srtA+ ), cytoplasmic, cell-wall and released extracellular protein fractions were isolated. Each fraction was analysed by SDS-PAGE and immunoblotting with anti-P1. Spent medium from srtA− mutant cells contained over-represented proteins, including SspA/SspB (P1 antigen). Mutants showed less P1 on the cell surface than wild-types, as estimated using whole-cell ELISA, and no P1 appeared in the cytoplasmic fractions. Expression of several adhesin genes (sspA/B, cshA/B, fbpA) was generally upregulated in the mutants (V288srtA− , DL1srtA− ), but restored to wild-type levels in DL1srtA+ . These data therefore imply that in addition to its role in processing LPXTG-containing adhesins, sortase A has the novel function of contributing to transcriptional regulation of adhesin gene expression.
-
-
-
Identification of multiple integration sites for Stx-phage Φ24B in the Escherichia coli genome, description of a novel integrase and evidence for a functional anti-repressor
The key virulence factor in Shiga-toxigenic Escherichia coli is the expression of Shiga toxin (Stx), which is conferred by Stx-encoding temperate lambdoid phages (Stx-phages). It had been assumed that Stx-phages would behave similarly to λ phage. However, contrary to the λ superinfection immunity model, it has been demonstrated that double lysogens can be produced with the Stx-phage Φ24B. Here, the Φ24B integrase gene is identified, and the preferred site of integration defined. Although an E. coli int gene was identified close to the Φ24B integration site, it was shown not to be involved in the phage integration event. An additional six potential integration sites were identified in the E. coli genome, and three of these were confirmed experimentally. Two of the other potential sites lie within genes predicted to be essential to E. coli and are therefore unlikely to support phage integration. A Φ24B gene, possessing similarity to the well-characterized P22 ant gene, was identified. RT-PCR was used to demonstrate that ant is transcribed in a Φ24B E. coli lysogen, and expression of an anti-repressor is the likely explanation for the absence of immunity to superinfection. Demonstration of the ability of Φ24B to form multiple lysogens has two potentially serious impacts. First, multiple integrated prophages will drive the evolution of bacterial pathogens as novel Stx-phages emerge following intracellular mutation/recombination events. Second, multiple copies of the stx gene may lead to an increase in toxin production and consequently increased virulence.
-
-
-
Organization of the biosynthetic gene cluster for the macrolide antibiotic spiramycin in Streptomyces ambofaciens
Spiramycin, a 16-membered macrolide antibiotic used in human medicine, is produced by Streptomyces ambofaciens; it comprises a polyketide lactone, platenolide, to which three deoxyhexose sugars are attached. In order to characterize the gene cluster governing the biosynthesis of spiramycin, several overlapping cosmids were isolated from an S. ambofaciens gene library, by hybridization with various probes (spiramycin resistance or biosynthetic genes, tylosin biosynthetic genes), and the sequences of their inserts were determined. Sequence analysis showed that the spiramycin biosynthetic gene cluster spanned a region of over 85 kb of contiguous DNA. In addition to the five previously described genes that encode the type I polyketide synthase involved in platenolide biosynthesis, 45 other genes have been identified. It was possible to propose a function for most of the inferred proteins in spiramycin biosynthesis, in its regulation, in resistance to the produced antibiotic or in the provision of extender units for the polyketide synthase. Two of these genes, predicted to be involved in deoxysugar biosynthesis, were inactivated by gene replacement, and the resulting mutants were unable to produce spiramycin, thus confirming their involvement in spiramycin biosynthesis. This work reveals the main features of spiramycin biosynthesis and constitutes a first step towards a detailed molecular analysis of the production of this medically important antibiotic.
-
-
-
CsoR regulates the copper efflux operon copZA in Bacillus subtilis
More LessThe adaptation of Bacillus subtilis to elevated levels of copper ions requires the copper-inducible copZA operon encoding a copper chaperone and efflux ATPase. Here we identify CsoR (formerly YvgZ) as the copper-sensing repressor that regulates the copZA operon. CsoR binds with high affinity to an operator site overlapping the copZA promoter and its binding is specifically inhibited by copper salts. As previously described, the YhdQ (CueR) protein also binds to the copZA regulatory region, but genetic experiments indicate that this protein is not responsible for the copper-dependent regulation of this operon.
-
-
-
VmeAB, an RND-type multidrug efflux transporter in Vibrio parahaemolyticus
Genes vmeA and vmeB, encoding a multidrug efflux transporter in the halophilic bacterium Vibrio parahaemolyticus, have been cloned using a drug-hypersusceptible Escherichia coli strain as the host. Cells of E. coli KAM33 (ΔacrAB ΔydhE) carrying the vmeAB region from V. parahaemolyticus conferred much higher MICs for a variety of antimicrobial agents than did control cells. Cells possessing VmeAB under energized conditions maintained very low intracellular concentrations of ethidium. This was as expected for an energy-dependent efflux system, and supports the notion – based on sequence homology – that VmeAB belongs to the resistance nodulation cell division (RND) family of multidrug efflux transporters. It is likely that VmeAB forms functional complexes with the outer-membrane protein TolC in E. coli, because introduction of vmeAB into cells of E. coli KAM43, which lacks the tolC gene, failed to elevate the MICs for any of the antimicrobial agents tested. Therefore, a V. parahaemolyticus homologue of tolC was also cloned, designated vpoC, and was introduced together with vmeAB into cells of E. coli KAM43. The MICs of all agents tested were raised and were comparable to the values observed in E. coli KAM33 harbouring a plasmid carrying vmeAB. Finally, a vmeAB-deficient mutant of V. parahaemolyticus was constructed (designated TM3). TM3 showed slightly higher susceptibility than the parental V. parahaemolyticus to some antimicrobial agents. Survival rate of the TM3 when exposed to deoxycholate decreased compared with that of the parent.
-
-
-
Comparative analysis of FimB and FimE recombinase activity
FimB and FimE are site-specific recombinases, part of the λ integrase family, and invert a 314 bp DNA switch that controls the expression of type 1 fimbriae in Escherichia coli. FimB and FimE differ in their activity towards the fim switch, with FimB catalysing inversion in both directions in comparison to the higher-frequency but unidirectional on-to-off recombination catalysed by FimE. Previous work has demonstrated that FimB, but not FimE, recombination is completely inhibited in vitro and in vivo by a regulator, PapB, expressed from a distinct fimbrial locus. The aim of this work was to investigate differences between FimB and FimE activity by exploiting the differential inhibition demonstrated by PapB. The research focused on genetic changes to the fim switch that alter recombinase binding and its structural context. FimB and FimE still recombined a switch in which the majority of fimS DNA was replaced with a larger region of non-fim DNA. This demonstrated a minimal requirement for FimB and FimE recombination of the Fim binding sites and associated inverted repeats. With the original leucine-responsive regulatory protein (Lrp) and integration host factor (IHF)-dependent structure removed, PapB was now able to inhibit both recombinases. The relative affinities of FimB and FimE were determined for the four ‘half sites’. This analysis, along with the effect of extensive swaps and duplications of the half sites on recombination frequency, demonstrated that FimB recruitment and therefore subsequent activity was dependent on a single half site and its context, whereas FimE recombination was less stringent, being able to interact initially with two half sites with equally high affinity. While increasing FimB recombination frequencies failed to overcome PapB repression, mutations made in recombinase binding sites resulted in inhibition of FimE recombination by PapB. Overall, the data support a model in which the recombinases differ in loading order and co-operative interactions. PapB exploits this difference and FimE becomes susceptible when its normal loading is restricted or changed.
-
-
-
Characterization of a Giardia lamblia WB C6 clone resistant to the isoflavone formononetin
More LessGiardia lamblia is a common intestinal-dwelling protozoan and causes diarrhoea in humans and animals worldwide. For several years, a small number of drugs such as the 5-nitroimidazole metronidazole (MET) or the thiazolide nitazoxanide (NTZ) have been used for chemotherapy against giardiasis. However, various pre-clinical and clinical investigations revealed that antigiardial chemotherapy may be complicated by emergence of giardial resistance to these drugs. The present study addressed the question if isoflavones with antigiardial activity, such as daidzein (DAI) or formononetin (FOR), may serve as alternative compounds for treatment of giardiasis. For this purpose, the potential of G. lamblia clone WB C6 to form resistance to FOR and related isoflavones was tested in vitro. In the line of these experiments, a clone (C3) resistant to isoflavones, but sensitive to MET and NTZ, was generated. Affinity chromatography on DAI-agarose using cell-free extracts of G. lamblia trophozoites resulted in the isolation of a polypeptide of approximately 40 kDa, which was identified by mass spectrometry as a nucleoside hydrolase (NH) homologue (EAA37551.1). In a nucleoside hydrolase assay, recombinant NH hydrolysed all nucleosides with a preference for purine nucleosides and was inhibited by isoflavones. Using quantitative RT-PCR, the expression of genes that are potentially involved in resistance formation was analysed, namely NH and genes encoding variant surface proteins (VSPs, TSA417). The transcript level of the potential target NH was found to be significantly reduced in C3. Moreover, drastic changes were observed in VSP gene expression. This may indicate that resistance formation in Giardia against isoflavones is linked to, and possibly mediated by, altered gene expression. Taken together, our results suggest FOR or related isoflavones as an alternative antigiardial agent to overcome potential problems of resistance to drugs like MET or NTZ. However, the capacity of Giardia to develop resistance to isoflavones can potentially interfere with this alternative treatment of the disease.
-
-
-
Analysis of the structure of mycolic acids of Mycobacterium simiae reveals a particular composition of α-mycolates in strain ‘habana’ TMC 5135, considered as immunogenic in tuberculosis and leprosy
More LessStructural analysis of mycolic acids from Mycobacterium simiae (including some ‘habana’ strains) was carried out using 1H-NMR and MS. Results indicated that this species presents a general pattern of α-, α′- and keto-mycolates. α-Mycolates were composed of a complex mixture of 82 to 89 carbon atoms (C82–C89), with the predominant molecular species containing two di-substituted cyclopropane rings. Among keto-mycolates (C84–C89), those containing one trans di-substituted cyclopropane ring were the most abundant. The α′-mycolates were monounsaturated (C64, C66). According to MS and 1H-NMR data, the strains studied differed in fine structural details of α-mycolates and keto-mycolates. Notably, strain ‘habana’ TMC 5135 (belonging to the ‘habana’ group, and considered as highly immunogenic in tuberculosis and leprosy) presented a particular composition of α-mycolates, with a major component (C87) containing one cis plus one trans di-substituted cyclopropane ring, unlike the type strain of M. simiae and other strains of the ‘habana’ group (IPK-220 and IPK-337R), in which the major component (C84) contained two cis di-substituted cyclopropane rings. In spite of this finding, the ‘habana’ strains were closely related to each other and mainly differed from the type strain of M. simiae in some details of the fine structure of keto-mycolates. The present work indicated that within an identical general pattern of mycolic acids, there is a complex composition in M. simiae and structural variation among different strains, as reported for pathogenic species of the genus. Noteworthy was the particular composition of α-mycolates in strain ‘habana’ TMC 5135.
-
-
-
Identification of the dehydratase component of the mycobacterial mycolic acid-synthesizing fatty acid synthase-II complex
More LessMycolic acids are vital components of the Mycobacterium tuberculosis cell wall and are essential for survival. While most components of the fatty acid synthase-II (FAS-II) enzymic machinery that synthesizes these long chain α-alkyl, β-hydroxy fatty acids have been identified, the gene encoding the β-hydroxyacyl-acyl carrier protein (ACP) dehydratase activity has remained elusive. Recent bioinformatics-based studies and drug inhibition experiments have identified the M. tuberculosis gene Rv0636 as a promising candidate for this role. Using a recently described, specialized transduction-based genetic tool we now demonstrate that MSMEG1341, the Mycobacterium smegmatis homologue of Rv0636, is an essential gene; null mutants of the gene could only be generated in a merodiploid strain which contained a second integrated acetamide-inducible copy of MSMEG1341. Growth of the conditional mutant in the absence of acetamide resulted in loss of mycolic acid biosynthesis and eventually loss of viability due to cell lysis. Null MSMEG1341 mutants could also be generated in a M. smegmatis strain containing an integrated copy of Rv0636, indicating that Rv0636 was the functional counterpart of MSMEG1341 in M. tuberculosis. Our results demonstrate that MSMEG1341 is an essential gene involved in mycolic acid biosynthesis and encodes the FAS-II β-hydroxyacyl-ACP dehydratase.
-
- Biodiversity And Evolution
-
-
-
Development of a multilocus sequence typing scheme for intestinal spirochaetes within the genus Brachyspira
The purpose of this study was to evaluate a multilocus sequence typing (MLST) scheme for intestinal spirochaetes of the genus Brachyspira. Eight loci mainly coding for enzymes previously used in multilocus enzyme electrophoresis analysis of Brachyspira species were examined in 66 Brachyspira field isolates and type/reference strains. The isolates and strains were recovered from pigs, birds, dogs and a mouse and originated from seven European countries, the USA and Canada. Forty-six isolates represented recognized Brachyspira species and 20 represented provisionally designated species or isolates that have not been classified. Only two loci gave PCR products for all 66 strains and isolates, but amplicons for seven loci were obtained for 44 of the isolates. Sequences for each locus had a DNA allelic variation of 30–47 and an amino acid allelic variation of 14–47 that gave rise to the same number of sequence and amino acid types (58) for the strains and isolates studied. A population snapshot based on sequence and amino acid types showed a close phylogenetic relationship amongst the porcine isolates from the same geographical regions, and indicated a close evolutionary relationship between isolates recovered from pigs and mallards. A general concordance was obtained between the MLST groupings and classifications based on culture and biochemical tests, 16S rDNA sequence analysis and random amplified polymorphic DNA analysis. This is a first step towards establishing an MLST system for use in identifying Brachyspira species and determining relationships between individual strains and species in the genus.
-
-
-
-
Protein expression diversity amongst serovars of Salmonella enterica
More LessSalmonella enterica is one of the most extensively studied bacterial species in terms of physiology, genetics, cell culture and development. As a very diverse group, the serovars of S. enterica display a spectrum of host specificities ranging from a broad host range to strictly host-adapted variants. This study utilized a classic proteomic approach combining 2D gel electrophoresis and mass spectrometry for the comparative analysis of the proteomes of serovars Typhimurium, Enteritidis, Choleraesuis, Pullorum and Dublin. The comparative analysis revealed species-specific protein factors with no significant change in expression amongst all isolates, as well as proteins with fluctuating expression levels between serovars and strains. Examples include an isoform of SodA specific for serovar Typhimurium, the third isoform of the lysine arginine ornithine (LAO)-binding amino acid transporter specific for serovar Pullorum, and the enzyme GabD found to be unique to serovar Choleraesuis. Overall the study demonstrated the importance of using multiple isolates when characterizing the expression patterns of bacteria in order to account for the intrinsic diversity of a bacterial population and revealed several factors with potential roles in host adaptation and pathogenicity of the serovars of S. enterica.
-
Volumes and issues
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
Most Read This Month
