1887

Abstract

NaBP, found in alkaliphilic OF4, is a member of the bacterial voltage-gated Na channel superfamily. The alkaliphile requires NaBP for normal chemotaxis responses and for optimal pH homeostasis during a shift to alkaline conditions at suboptimally low Na concentrations. We hypothesized that interaction of NaBP with one or more other proteins , specifically methyl-accepting chemotaxis proteins (MCPs), is involved in activation of the channel under the pH conditions that exist in the extremophile and could underpin its role in chemotaxis; MCPs transduce chemotactic signals and generally localize to cell poles of rod-shaped cells. Here, immunofluorescence microscopy and fluorescent protein fusion studies showed that an alkaliphile protein (designated McpX) that cross-reacts with antibodies raised against McpB co-localizes with NaBP at the cell poles of OF4. In a mutant in which NaBP-encoding is deleted, the content of McpX was close to the wild-type level but McpX was significantly delocalized. A mutant of OF4 was constructed in which expression was disrupted to assess whether this mutation impaired polar localization of McpX, as expected from studies in and , and, if so, whether NaBP would be similarly affected. Polar localization of both McpX and NaBP was decreased in the mutant. The results suggest interactions between McpX and NaBP that affect their co-localization. The inverse chemotaxis phenotype of mutants may result in part from MCP delocalization.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/012070-0
2007-12-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/12/4027.html?itemId=/content/journal/micro/10.1099/mic.0.2007/012070-0&mimeType=html&fmt=ahah

References

  1. Baker, M. D., Wolanin, P. M. & Stock, J. B. ( 2006; ). Signal transduction in bacterial chemotaxis. Bioessays 28, 9–22.[CrossRef]
    [Google Scholar]
  2. Bechhofer, D. H. & Wang, W. ( 1998; ). Decay of ermC mRNA in a polynucleotide phosphorylase mutant of Bacillus subtilis. J Bacteriol 180, 5968–5977.
    [Google Scholar]
  3. Bekele-Arcuri, Z., Matos, M. F., Manganas, L., Strassle, B. W., Monaghan, M. M., Rhodes, K. J. & Trimmer, J. S. ( 1996; ). Generation and characterization of subtype-specific monoclonal antibodies to K+ channel alpha- and beta-subunit polypeptides. Neuropharmacology 35, 851–865.[CrossRef]
    [Google Scholar]
  4. Blanchet, J., Pilote, S. & Chahine, M. ( 2007; ). Acidic residues on the voltage-sensor domain determine the activation of the NaChBac sodium channel. Biophys J 92, 3513–3523.[CrossRef]
    [Google Scholar]
  5. Booth, I. R., Edwards, M. D. & Miller, S. ( 2003; ). Bacterial ion channels. Biochemistry 42, 10045–10053.[CrossRef]
    [Google Scholar]
  6. Booth, I. R., Edwards, M. D., Murray, E. & Miller, S. ( 2005; ). The role of bacterial channels in cell physiology. In Bacterial Ion Channels and Their Eukaryotic Homologs, pp. 291–312. Edited by A. Kubalski & B. Marinac. Washington, DC: American Society for Microbiology.
  7. Bray, D., Levin, M. D. & Morton-Firth, C. J. ( 1998; ). Receptor clustering as a cellular mechanism to control sensitivity. Nature 393, 85–88.[CrossRef]
    [Google Scholar]
  8. Chahine, M., Pilote, S., Pouliot, V., Takami, H. & Sato, C. ( 2004; ). Role of arginine residues on the S4 segment of the Bacillus halodurans Na+ channel in voltage-sensing. J Membr Biol 201, 9–24.[CrossRef]
    [Google Scholar]
  9. Clejan, S., Guffanti, A. A., Cohen, M. A. & Krulwich, T. A. ( 1989; ). Mutation of Bacillus firmus OF4 to duramycin resistance results in substantial replacement of membrane lipid phosphatidylethanolamine by its plasmalogen form. J Bacteriol 171, 1744–1746.
    [Google Scholar]
  10. Duke, T. A. & Bray, D. ( 1999; ). Heightened sensitivity of a lattice of membrane receptors. Proc Natl Acad Sci U S A 96, 10104–10108.[CrossRef]
    [Google Scholar]
  11. Fujinami, S., Terahara, N., Lee, S. & Ito, M. ( 2007; ). Na+ and flagella-dependent swimming of alkaliphilic Bacillus pseudofirmus OF4: a basis for poor motility at low pH and enhancement in viscous media in an “up-motile” variant. Arch Microbiol 187, 239–247.[CrossRef]
    [Google Scholar]
  12. Gegner, J. A., Graham, D. R., Roth, A. F. & Dahlquist, F. W. ( 1992; ). Assembly of an MCP receptor, CheW, and kinase CheA complex in the bacterial chemotaxis signal transduction pathway. Cell 70, 975–982.[CrossRef]
    [Google Scholar]
  13. Gestwicki, J. E., Lamanna, A. C., Harshey, R. M., McCarter, L. L., Kiessling, L. L. & Adler, J. ( 2000; ). Evolutionary conservation of methyl-accepting chemotaxis protein location in Bacteria and Archaea. J Bacteriol 182, 6499–6502.[CrossRef]
    [Google Scholar]
  14. Goldberg, E. B., Arbel, T., Chen, J., Karpel, R., Mackie, G. A., Schuldiner, S. & Padan, E. ( 1987; ). Characterization of a Na+/H+ antiporter gene of Escherichia coli. Proc Natl Acad Sci U S A 84, 2615–2619.[CrossRef]
    [Google Scholar]
  15. Goulbourne, E. A. J. & Greenberg, E. P. ( 1983; ). Inhibition of Spirochaeta aurantia chemotaxis by neurotoxins. J Bacteriol 155, 1443–1445.
    [Google Scholar]
  16. Hanlon, D. W. & Ordal, G. W. ( 1994; ). Cloning and characterization of genes encoding methyl-accepting chemotaxis proteins in Bacillus subtilis. J Biol Chem 269, 14038–14046.
    [Google Scholar]
  17. Hiraga, S., Ichinose, C., Niki, H. & Yamazoe, M. ( 1998; ). Cell cycle-dependent duplication and bidirectional migration of SeqA-associated DNA–protein complexes in E. coli. Mol Cell 1, 381–387.[CrossRef]
    [Google Scholar]
  18. Horinouchi, S. & Weisblum, B. ( 1982; ). Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance. J Bacteriol 150, 815–825.
    [Google Scholar]
  19. Horton, R. M. ( 1997; ). In vitro recombination and mutagenesis of DNA. SOEing together tailor-made genes. Methods Mol Biol 67, 141–149.
    [Google Scholar]
  20. Irieda, H., Homma, M., Homma, M. & Kawagishi, I. ( 2006; ). Control of chemotactic signal gain via modulation of a pre-formed receptor array. J Biol Chem 281, 23880–23886.[CrossRef]
    [Google Scholar]
  21. Ito, M., Guffanti, A. A., Zemsky, J., Ivey, D. M. & Krulwich, T. A. ( 1997; ). Role of the nhaC-encoded Na+/H+ antiporter of alkaliphilic Bacillus firmus OF4. J Bacteriol 179, 3851–3857.
    [Google Scholar]
  22. Ito, M., Hicks, D. B., Henkin, T. M., Guffanti, A. A., Powers, B., Zvi, L., Uematsu, K. & Krulwich, T. A. ( 2004a; ). MotPS is the stator-force generator for motility of alkaliphilic Bacillus and its homologue is a second functional Mot in Bacillus subtilis. Mol Microbiol 53, 1035–1049.[CrossRef]
    [Google Scholar]
  23. Ito, M., Xu, H., Guffanti, A. A., Wei, Y., Zvi, L., Clapham, D. E. & Krulwich, T. A. ( 2004b; ). The voltage-gated Na+ channel NavBP has a role in motility, chemotaxis, and pH homeostasis of an alkaliphilic Bacillus. Proc Natl Acad Sci U S A 101, 10566–10571.[CrossRef]
    [Google Scholar]
  24. Kentner, D., Thiem, S., Hildenbeutel, M. & Sourjik, V. ( 2006; ). Determinants of chemoreceptor cluster formation in Escherichia coli. Mol Microbiol 61, 407–417.[CrossRef]
    [Google Scholar]
  25. Kirby, J. R., Niewold, T. B., Maloy, S. & Ordal, G. W. ( 2000; ). CheB is required for behavioural responses to negative stimuli during chemotaxis in Bacillus subtilis. Mol Microbiol 35, 44–57.[CrossRef]
    [Google Scholar]
  26. Koishi, R., Xu, H., Ren, D., Navarro, B., Spiller, B. W., Shi, Q. & Clapham, D. E. ( 2004; ). A superfamily of voltage-gated sodium channels in bacteria. J Biol Chem 279, 9532–9538.[CrossRef]
    [Google Scholar]
  27. Krulwich, T. A. ( 1995; ). Alkaliphiles: ‘basic’ molecular problems of pH tolerance and bioenergetics. Mol Microbiol 15, 403–410.[CrossRef]
    [Google Scholar]
  28. Krulwich, T. A., Ito, M. & Guffanti, A. A. ( 2001; ). The Na+-dependence of alkaliphily in Bacillus. Biochim Biophys Acta 1505, 158–168.[CrossRef]
    [Google Scholar]
  29. Krulwich, T. A., Hicks, D. B., Swartz, T. H. & Ito, M. ( 2007; ). Bioenergetic adaptations that support alkaliphily. In Physiology and Biochemistry of Extremophiles, pp. 257–270. Edited by C. Gerday & N. Glansdorff. Washington, DC: American Society for Microbiology.
  30. Kung, C. & Blount, P. ( 2004; ). Channels in microbes: so many holes to fill. Mol Microbiol 53, 373–380.[CrossRef]
    [Google Scholar]
  31. Kuzmenkin, A., Bezanilla, F. & Correa, A. M. ( 2004; ). Gating of the bacterial sodium channel, NaChBac: voltage-dependent charge movement and gating currents. J Gen Physiol 124, 349–356.[CrossRef]
    [Google Scholar]
  32. Lamanna, A. C., Ordal, G. W. & Kiessling, L. L. ( 2005; ). Large increases in attractant concentration disrupt the polar localization of bacterial chemoreceptors. Mol Microbiol 57, 774–785.[CrossRef]
    [Google Scholar]
  33. Levitan, I. B. ( 1999; ). Modulation of ion channels by protein phosphorylation. How the brain works. Adv Second Messenger Phosphoprotein Res 33, 3–22.
    [Google Scholar]
  34. Liu, Y., Levit, M., Lurz, R., Surette, M. G. & Stock, J. B. ( 1997; ). Receptor-mediated protein kinase activation and the mechanism of transmembrane signaling in bacterial chemotaxis. EMBO J 16, 7231–7240.[CrossRef]
    [Google Scholar]
  35. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. ( 1951; ). Protein measurement with the Folin phenol reagent. J Biol Chem 193, 265–275.
    [Google Scholar]
  36. Lybarger, S. R. & Maddock, J. R. ( 1999; ). Clustering of the chemoreceptor complex in Escherichia coli is independent of the methyltransferase CheR and the methylesterase CheB. J Bacteriol 181, 5527–5529.
    [Google Scholar]
  37. Lybarger, S. R. & Maddock, J. R. ( 2001; ). Polarity in action: asymmetric protein localization in bacteria. J Bacteriol 183, 3261–3267.[CrossRef]
    [Google Scholar]
  38. Maddock, J. R. & Shapiro, L. ( 1993; ). Polar location of the chemoreceptor complex in the Escherichia coli cell. Science 259, 1717–1723.[CrossRef]
    [Google Scholar]
  39. Padan, E., Bibi, E., Ito, M. & Krulwich, T. A. ( 2005; ). Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta 1717, 67–88.[CrossRef]
    [Google Scholar]
  40. Park, K. S., Mohapatra, D. P., Misonou, H. & Trimmer, J. S. ( 2006; ). Graded regulation of the Kv2.1 potassium channel by variable phosphorylation. Science 313, 976–979.[CrossRef]
    [Google Scholar]
  41. Pavlov, E., Bladen, C., Winkfein, R., Diao, C., Dhaliwal, P. & French, R. J. ( 2005; ). The pore, not cytoplasmic domains, underlies inactivation in a prokaryotic sodium channel. Biophys J 89, 232–242.[CrossRef]
    [Google Scholar]
  42. Rao, C. V., Kirby, J. R. & Arkin, A. P. ( 2004; ). Design and diversity in bacterial chemotaxis: a comparative study in Escherichia coli and Bacillus subtilis. PLoS Biol 2, E49 [CrossRef]
    [Google Scholar]
  43. Ren, D., Navarro, B., Xu, H., Yue, L., Shi, Q. & Clapham, D. E. ( 2001; ). A prokaryotic voltage-gated sodium channel. Science 294, 2372–2375.[CrossRef]
    [Google Scholar]
  44. Richardson, J., Blunck, R., Ge, P., Selvin, P. R., Bezanilla, F., Papazian, D. M. & Correa, A. M. ( 2006; ). Distance measurements reveal a common topology of prokaryotic voltage-gated ion channels in the lipid bilayer. Proc Natl Acad Sci U S A 103, 15865–15870.[CrossRef]
    [Google Scholar]
  45. Schagger, H. & von Jagow, G. ( 1987; ). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166, 368–379.[CrossRef]
    [Google Scholar]
  46. Shapiro, L., McAdams, H. H. & Losick, R. ( 2002; ). Generating and exploiting polarity in bacteria. Science 298, 1942–1946.[CrossRef]
    [Google Scholar]
  47. Shiomi, D., Yoshimoto, M., Homma, M. & Kawagishi, I. ( 2006; ). Helical distribution of the bacterial chemoreceptor via colocalization with the Sec protein translocation machinery. Mol Microbiol 60, 894–906.[CrossRef]
    [Google Scholar]
  48. Skidmore, J. M., Ellefson, D. D., McNamara, B. P., Couto, M. M., Wolfe, A. J. & Maddock, J. R. ( 2000; ). Polar clustering of the chemoreceptor complex in Escherichia coli occurs in the absence of complete CheA function. J Bacteriol 182, 967–973.[CrossRef]
    [Google Scholar]
  49. Sourjik, V. & Berg, H. C. ( 2000; ). Localization of components of the chemotaxis machinery of Escherichia coli using fluorescent protein fusions. Mol Microbiol 37, 740–751.[CrossRef]
    [Google Scholar]
  50. Sturr, M. G., Guffanti, A. A. & Krulwich, T. A. ( 1994; ). Growth and bioenergetics of alkaliphilic Bacillus firmus OF4 in continuous culture at high pH. J Bacteriol 176, 3111–3116.
    [Google Scholar]
  51. Szurmant, H. & Ordal, G. W. ( 2004; ). Diversity in chemotaxis mechanisms among the bacteria and archaea. Microbiol Mol Biol Rev 68, 301–319.[CrossRef]
    [Google Scholar]
  52. Tisa, L. S., Olivera, B. M. & Adler, J. ( 1993; ). Inhibition of Escherichia coli chemotaxis by omega-conotoxin, a calcium ion channel blocker. J Bacteriol 175, 1235–1238.
    [Google Scholar]
  53. Tisa, L. S., Sekelsky, J. J. & Adler, J. ( 2000; ). Effects of organic antagonists of Ca2+, Na+, and K+ on chemotaxis and motility of Escherichia coli. J Bacteriol 182, 4856–4861.[CrossRef]
    [Google Scholar]
  54. Trimmer, J. S., Trowbridge, I. S. & Vacquier, V. D. ( 1985; ). Monoclonal antibody to a membrane glycoprotein inhibits the acrosome reaction and associated Ca2+ and H+ fluxes of sea urchin sperm. Cell 40, 697–703.[CrossRef]
    [Google Scholar]
  55. Wadhams, G. H. & Armitage, J. P. ( 2004; ). Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5, 1024–1037.[CrossRef]
    [Google Scholar]
  56. Weis, R. M. ( 2006; ). Inch by inch, row by row. Nat Struct Mol Biol 13, 382–384.[CrossRef]
    [Google Scholar]
  57. Zhao, Y., Scheuer, T. & Catterall, W. A. ( 2004; ). Reversed voltage-dependent gating of a bacterial sodium channel with proline substitutions in the S6 transmembrane segment. Proc Natl Acad Sci U S A 101, 17873–17878.[CrossRef]
    [Google Scholar]
  58. Zhulin, I. B. ( 2001; ). The superfamily of chemotaxis transducers: from physiology to genomics and back. Adv Microb Physiol 45, 157–198.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/012070-0
Loading
/content/journal/micro/10.1099/mic.0.2007/012070-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error