1887

Abstract

The structural organization of four microbial communities was analysed by a novel computer program, COMSTAT, which comprises ten features for quantifying three-dimensional biofilm image stacks. Monospecies biofilms of each of the four bacteria, , , and , tagged with the green fluorescent protein (GFP) were grown in flow chambers with a defined minimal medium as substrate. Analysis by the COMSTAT program of four variables describing biofilm structure – mean thickness, roughness, substratum coverage and surface to volume ratio – showed that the four strains represent different modes of biofilm growth. had a unique developmental pattern starting with single cells on the substratum growing into micro-colonies, which were eventually succeeded by long filaments and elongated cell clusters. colonized the entire substratum, and formed flat, uniform biofilms. resembled , but had a stronger tendency to form micro-colonies. Finally, the biofilm structures of had a phenotype intermediate between those of and . Analysis of biofilms of growing on 003 mM, 01 mM or 05 mM citrate minimal media showed that mean biofilm thickness increased with increasing citrate concentration. Moreover, biofilm roughness increased with lower citrate concentrations, whereas surface to volume ratio increased with higher citrate concentrations.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-146-10-2395
2000-10-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/146/10/1462395a.html?itemId=/content/journal/micro/10.1099/00221287-146-10-2395&mimeType=html&fmt=ahah

References

  1. Adams, J. L. & McLean, R. J. ( 1999; ). Impact of rpoS deletion on Escherichia coli biofilms. Appl Environ Microbiol 65, 4285-4287.
    [Google Scholar]
  2. Andersen, J. B., Sternberg, C., Poulsen, L. K., Bjørn, S. P., Givskov, M. & Molin, S. ( 1998; ). New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol 64, 2240-2246.
    [Google Scholar]
  3. Anwar, H., Strap, J. L. & Costerton, J. W. ( 1992; ). Establishment of aging biofilms: possible mechanism of bacterial resistance to antimicrobial therapy. Antimicrob Agents Chemother 36, 1347-1351.[CrossRef]
    [Google Scholar]
  4. Brooun, A., Liu, S. & Lewis, K. ( 2000; ). A dose–response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 44, 640-646.[CrossRef]
    [Google Scholar]
  5. Caldwell, D., Korber, D. R. & Lawrence, J. R. ( 1992; ). Confocal laser microscopy and digital image analysis in microbial ecology. In Advances in Microbial Ecology , pp. 1-67. Edited by K. C. Marshall. New York:Plenum.
  6. Christensen, B. B., Sternberg, C., Andersen, J. B., Palmer, R. J., Nielsen, A. T., Givskov, M. & Molin, S. ( 1999; ). Molecular tools for study of biofilm physiology. Methods Enzymol 310, 20-42.
    [Google Scholar]
  7. Costerton, J. W., Stewart, P. S. & Greenberg, E. P. ( 1999; ). Bacterial biofilms: a common cause of persistent infections. Science 284, 1318-1322.[CrossRef]
    [Google Scholar]
  8. Dalton, H. M., Poulsen, L. K., Halasz, P., Angles, M. L., Goodman, A. E. & Marshall, K. C. ( 1994; ). Substratum-induced morphological changes in a marine bacterium and their relevance to biofilm structure. J Bacteriol 176, 6900-6906.
    [Google Scholar]
  9. Davies, D. G. & Geesey, G. G. ( 1995; ). Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture. Appl Environ Microbiol 61, 860-867.
    [Google Scholar]
  10. Davies, D. G., Chakrabarty, A. M. & Geesey, G. G. ( 1993; ). Exopolysaccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosa. Appl Environ Microbiol 59, 1181-1186.
    [Google Scholar]
  11. Davies, D. G., Parsek, M. R., Pearson, J. P., Iglewski, B. H., Costerton, J. W. & Greenberg, E. P. ( 1998; ). The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280, 295-298.[CrossRef]
    [Google Scholar]
  12. Fukunaga, K. (1972). Introduction to Statistical Pattern Recognition. London: Academic Press.
  13. Hermanowicz, S. W., Schindler, U. & Wilderer, P. A. ( 1995; ). Fractal structure of biofilms: new tools for investigation of morphology. Water Sci Technol 32, 99-105.
    [Google Scholar]
  14. Heydorn, A., Ersbøll, B. K., Hentzer, M., Parsek, M. R., Givskov, M. & Molin, S. ( 2000; ). Experimental reproducibility in flow-chamber biofilms: Microbiology 146, 2409-2415.
    [Google Scholar]
  15. Holloway, B. W. ( 1955; ). Genetic recombination in Pseudomonas aeruginosa. J Gen Microbiol 13, 572-581.[CrossRef]
    [Google Scholar]
  16. Hughs, G. F. ( 1968; ). On the mean accuracy of statistical pattern recognizers. IEEE Trans Inf Theory 14, 55-63.[CrossRef]
    [Google Scholar]
  17. Kharazmi, A., Giwercman, B. & Høiby, N. ( 1999; ). Robbins device in biofilm research. Methods Enzymol 310, 207-215.
    [Google Scholar]
  18. Korber, D. R., Lawrence, J. R., Hendry, M. J. & Caldwell, D. ( 1992; ). Programs for determining statistically representative areas of microbial biofilms. Binary 4, 204-210.
    [Google Scholar]
  19. Korber, D. R., Lawrence, J. R., Hendry, M. J. & Caldwell, D. E. ( 1993; ). Analysis of spatial variability within Mot+ and Mot Pseudomonas fluorescens biofilms using representative elements. Biofouling 7, 339-358.[CrossRef]
    [Google Scholar]
  20. Korber, D. R., Lawrence, J. R. & Caldwell, D. E. ( 1994; ). Effect of motility on surface colonization and reproductive success of Pseudomonas fluorescens in dual-dilution continuous culture and batch culture systems. Appl Environ Microbiol 60, 1421-1429.
    [Google Scholar]
  21. Kuehn, M., Hausner, M., Bungartz, H. J., Wagner, M., Wilderer, P. A. & Wuertz, S. ( 1998; ). Automated confocal laser scanning microscopy and semiautomated image processing for analysis of biofilms. Appl Environ Microbiol 64, 4115-4127.
    [Google Scholar]
  22. Lanzer, M. & Bujard, H. ( 1988; ). Promoters largely determine the efficiency of repressor action. Proc Natl Acad Sci U S A 85, 8973-8977.[CrossRef]
    [Google Scholar]
  23. Lewandowski, Z., Webb, D., Hamilton, M. & Harkin, G. ( 1999; ). Quantifying biofilm structure. Water Sci Technol 39, 71-76.
    [Google Scholar]
  24. de Lorenzo, V., Herrero, M., Jakubzik, U. & Timmis, K. N. ( 1990; ). Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol 172, 6568-6572.
    [Google Scholar]
  25. de Lorenzo, V., Eltis, L., Kessler, B. & Timmis, K. N. ( 1993; ). Analysis of Pseudomonas gene-products using lacIQ Ptrp-Lac plasmids and transposons that confer conditional phenotypes. Gene 123, 17-24.[CrossRef]
    [Google Scholar]
  26. Mavrodi, D. V., Ksenzenko, V. N., Bonsall, R. F., Cook, R. J., Boronin, A. M. & Thomashow, L. S. ( 1998; ). A seven-gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2-79. J Bacteriol 180, 2541-2548.
    [Google Scholar]
  27. Mazzola, M., Fujimoto, D. K., Thomashow, L. S. & Cook, R. J. ( 1995; ). Variation in sensitivity of Gaeumannomyces graminis to antibiotics produced by fluorescent Pseudomonas spp and effect on biological control of take-all of wheat. Appl Environ Microbiol 61, 2554-2559.
    [Google Scholar]
  28. Molina, L., Ramos, C., Ronchel, M. C., Molin, S. & Ramos, J. L. ( 1998; ). Construction of an efficient biologically contained Pseudomonas putida strain and its survival in outdoor assays. Appl Environ Microbiol 64, 2072-2078.
    [Google Scholar]
  29. Møller, S., Pedersen, A. R., Poulsen, L. K., Arvin, E. & Molin, S. ( 1996; ). Activity and three-dimensional distribution of toluene-degrading Pseudomonas putida in a multispecies biofilm assessed by quantitative in situ hybridization and scanning confocal laser microscopy. Appl Environ Microbiol 62, 4632-4640.
    [Google Scholar]
  30. Møller, S., Korber, D. R., Wolfaardt, G. M., Molin, S. & Caldwell, D. E. ( 1997; ). Impact of nutrient composition on a degradative biofilm community. Appl Environ Microbiol 63, 2432-2438.
    [Google Scholar]
  31. Møller, S., Sternberg, C., Andersen, J. B., Christensen, B. B., Ramos, J. L., Givskov, M. & Molin, S. ( 1998; ). In situ gene expression in mixed-culture biofilms: evidence of metabolic interactions between community members. Appl Environ Microbiol 64, 721-732.
    [Google Scholar]
  32. Morrison, D. F. (1990). Multivariate Statistical Methods, 3rd edn. New York: McGraw-Hill.
  33. Murga, R., Stewart, P. S. & Daly, D. ( 1995; ). Quantitative analysis of biofilm thickness variability. Biotechnol Bioeng 45, 503-510.[CrossRef]
    [Google Scholar]
  34. Nielsen, A. T., Tolker-Nielsen, T., Barken, K. B. & Molin, S. ( 2000; ). Role of commensal relationships on the spatial structure of a surface-attached microbial consortium. Environ Microbiol 2, 59-68.[CrossRef]
    [Google Scholar]
  35. O’Toole, G. A. & Kolter, R. ( 1998; ). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30, 295-304.[CrossRef]
    [Google Scholar]
  36. O’Toole, G. A., Gibbs, K. A., Hager, P. W., Phibbs, P. V. & Kolter, R. ( 2000; ). The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosa. J Bacteriol 182, 425-431.[CrossRef]
    [Google Scholar]
  37. Palmer, R. J.Jr ( 1999; ). Microscopy flowcells: perfusion chambers for real-time study of biofilms. Methods Enzymol 310, 160-166.
    [Google Scholar]
  38. Park, Y. S., Yun, J. W. & Song, S. K. ( 1998; ). Biofilm properties under different substrate loading rates in a rotating biological contactor. Biotechnol Tech 12, 587-590.
    [Google Scholar]
  39. Peyton, B. M. ( 1996; ). Effects of shear stress and substrate loading rate on Pseudomonas aeruginosa biofilm thickness and density. Water Res 30, 29-36.[CrossRef]
    [Google Scholar]
  40. Picioreanu, C., Van Loosdrecht, M. C. M. & Heijnen, J. J. ( 1998a; ). A new combined differential-discrete cellular automaton approach for biofilm modeling: application for growth in gel beads. Biotechnol Bioeng 57, 718-731.[CrossRef]
    [Google Scholar]
  41. Picioreanu, C., Van Loosdrecht, M. C. M. & Heijnen, J. J. ( 1998b; ). Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotechnol Bioeng 58, 101-116.[CrossRef]
    [Google Scholar]
  42. Pratt, L. A. & Kolter, R. ( 1998; ). Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30, 285-293.[CrossRef]
    [Google Scholar]
  43. Prigent-Combaret, C., Vidal, O., Dorel, C. & Lejeune, P. ( 1999; ). Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J Bacteriol 181, 5993-6002.
    [Google Scholar]
  44. Rainey, P. B. ( 1999; ). Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ Microbiol 1, 243-257.[CrossRef]
    [Google Scholar]
  45. Ramos, J. L., Duque, E. & Ramos-González, M. I. ( 1991; ). Survival in soils of an herbicide-resistant Pseudomonas putida strain bearing a recombinant TOL plasmid. Appl Environ Microbiol 57, 260-266.
    [Google Scholar]
  46. Ramos, J. L., Diaz, E., Dowling, D., de Lorenzo, V., Molin, S., O’Gara, F., Ramos, C. & Timmis, K. N. ( 1994; ). The behavior of bacteria designed for biodegradation. Biotechnology 12, 1349-1356.[CrossRef]
    [Google Scholar]
  47. Ramos-Diaz, M. A. & Ramos, J. L. ( 1998; ). Combined physical and genetic map of the Pseudomonas putida KT2440 chromosome. J Bacteriol 180, 6352-6363.
    [Google Scholar]
  48. Russ, J. C. (1994). The Image Processing Handbook, 2nd edn. Boca Raton, CRC Press.
  49. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstruction of phylogenetic trees. Mol Biol Evol 4, 406-425.
    [Google Scholar]
  50. Sieracki, M. E., Reichenbach, S. E. & Webb, K. L. ( 1989; ). Evaluation of automated threshold selection methods for accurately sizing microscopic fluorescent cells by image analysis. Appl Environ Microbiol 55, 2762-2772.
    [Google Scholar]
  51. Stewart, P. S., Peyton, B. M., Drury, W. J. & Murga, R. ( 1993; ). Quantitative observations of heterogeneities in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 59, 327-329.
    [Google Scholar]
  52. Thompson, I. P., Lilley, A. K., Ellis, R. J., Bramwell, P. A. & Bailey, M. J. ( 1995; ). Survival, colonization and dispersal of genetically modified Pseudomonas fluorescens SBW25 in the phytosphere of field-grown sugar-beet. Biotechnology 13, 1493-1497.[CrossRef]
    [Google Scholar]
  53. Tümmler, B. & Kiewitz, C. ( 1999; ). Cystic fibrosis: an inherited susceptibility to bacterial respiratory infections. Mol Med Today 5, 351-358.[CrossRef]
    [Google Scholar]
  54. Van Loosdrecht, M. C. M., Eikelboom, D., Gjaltema, A., Mulder, A., Tijhuis, L. & Heijnen, J. J. ( 1995; ). Biofilm structures. Water Sci Technol 32, 35-43.
    [Google Scholar]
  55. Vroom, J. M., De Grauw, K. J., Gerritsen, H. C., Bradshaw, D. J., Marsh, P. D., Watson, G. K., Birmingham, J. J. & Allison, C. ( 1999; ). Depth penetration and detection of pH gradients in biofilms by two-photon excitation microscopy. Appl Environ Microbiol 65, 3502-3511.
    [Google Scholar]
  56. Wimpenny, J. W. T. & Colasanti, R. ( 1997; ). A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models. FEMS Microbiology Ecology 22, 1-16.[CrossRef]
    [Google Scholar]
  57. Wolfaardt, G. M., Lawrence, J. R., Robarts, R. D., Caldwell, S. J. & Caldwell, D. E. ( 1994; ). Multicellular organization in a degradative biofilm community. Appl Environ Microbiol 60, 434-446.
    [Google Scholar]
  58. Wood, D. W., Gong, F., Daykin, M. M., Williams, P. & Pierson, L. S.III ( 1997; ). N-Acyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30-84 in the wheat rhizosphere. J Bacteriol 179, 7663-7670.
    [Google Scholar]
  59. Xu, K. D., Stewart, P. S., Xia, F., Huang, C. T. & McFeters, G. A. ( 1998; ). Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl Environ Microbiol 64, 4035-4039.
    [Google Scholar]
  60. Yang, X. M., Beyenal, H., Harkin, G. & Lewandowski, Z. ( 2000; ). Quantifying biofilm structure using image analysis. J Microbiol Methods 39, 109-119.[CrossRef]
    [Google Scholar]
  61. Zhang, T. C. & Bishop, P. L. ( 1994; ). Density, porosity, and pore structure of biofilms. Water Res 28, 2267-2277.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-146-10-2395
Loading
/content/journal/micro/10.1099/00221287-146-10-2395
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error