1887

Abstract

identification criteria were defined to predict if genes encoding histidine protein kinases (HPKs) and response regulators (RRs) could be part of peptide-based quorum sensing (QS) two-component regulatory systems (QS-TCSs) in Firmicutes. These criteria were used to screen HPKs and RRs annotated on the completed genome sequences of species, and several (putative) QS-TCSs were identified in this way. The five peptide-based QS-TCSs that were predicted on the WCFS1 genome were further analysed to test their (QS) functionality. Four of these systems contained an upstream gene encoding a putative autoinducing peptide (AIP), of which two were preceded by a double-glycine-type leader peptide. One of these was identical to the regulatory system of C11 and was shown to regulate plantaricin production in WCFS1. The third TCS was designated for -like odule, where the gene was shown to encode a cyclic thiolactone peptide. The fourth TCS was paralogous to the system and contained a putative AIP-encoding gene but lacked the gene. Finally, a genetically separated orphan HPK and RR that showed clear peptide-based QS characteristics could form a fifth peptide-based QS-TCS. The predicted presence of multiple (peptide-based) QS-TCSs in some lactobacilli and in particular in might be a reflection of the ability of these species to persist in a diverse range of ecological niches.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/012831-0
2007-12-01
2020-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/12/3939.html?itemId=/content/journal/micro/10.1099/mic.0.2007/012831-0&mimeType=html&fmt=ahah

References

  1. Ahrne S., Nobaek S., Jeppsson B., Adlerberth I., Wold A. E., Molin G.. 1998; The normal Lactobacillus flora of healthy human rectal and oral mucosa. J Appl Microbiol85:88–94
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410
    [Google Scholar]
  3. Anderssen E. L., Diep D. B., Nes I. F., Eijsink V. G., Nissen-Meyer J.. 1998; Antagonistic activity of Lactobacillus plantarum C11: two new two-peptide bacteriocins, plantaricins EF and JK, and the induction factor plantaricin A. Appl Environ Microbiol64:2269–2272
    [Google Scholar]
  4. Ansaldi M., Dubnau D.. 2004; Diversifying selection at the Bacillus quorum-sensing locus and determinants of modification specificity during synthesis of the ComX pheromone. J Bacteriol186:15–21
    [Google Scholar]
  5. Caplice E., Fitzgerald G. F.. 1999; Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol50:131–149
    [Google Scholar]
  6. de Jong A., van Hijum S. A., Bijlsma J. J., Kok J., Kuipers O. P.. 2006; bagel: a web-based bacteriocin genome mining tool. Nucleic Acids Res34:W273–W279
    [Google Scholar]
  7. Diep D. B., Håvarstein L. S., Nes I. F.. 1996; Characterization of the locus responsible for the bacteriocin production in Lactobacillus plantarum C11. J Bacteriol178:4472–4483
    [Google Scholar]
  8. Dobson A. E., Sanozky-Dawes R. B., Klaenhammer T. R.. 2007; Identification of an operon and inducing peptide involved in the production of lactacin B by Lactobacillus acidophilus . J Appl Microbiol103:1766–1778
    [Google Scholar]
  9. Ennahar S., Sashihara T., Sonomoto K., Ishizaki A.. 2000; Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol Rev24:85–106
    [Google Scholar]
  10. Flynn S., van Sinderen D., Thornton G. M., Holo H., Nes I. F., Collins J. K.. 2002; Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium Lactobacillus salivarius subsp. salivarius UCC118. Microbiology148:973–984
    [Google Scholar]
  11. Fuqua W. C., Winans S. C., Greenberg E. P.. 1994; Quorum-sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol176:269–275
    [Google Scholar]
  12. Gray K. M., Garey J. R.. 2001; The evolution of bacterial LuxI and LuxR quorum sensing regulators. Microbiology147:2379–2387
    [Google Scholar]
  13. Grebe T. W., Stock J. B.. 1999; The histidine protein kinase superfamily. Adv Microb Physiol41:139–227
    [Google Scholar]
  14. Håvarstein L. S., Diep D. B., Nes I. F.. 1995; A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol Microbiol16:229–240
    [Google Scholar]
  15. Hoch J. A., Silhavy T. J.. 1995; Two-Component Signal Transduction pp– 488 Washington, DC: American Society for Microbiology;
  16. Ji G., Beavis R. C., Novick R. P.. 1995; Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. Proc Natl Acad Sci U S A92:12055–12059
    [Google Scholar]
  17. Ji G., Beavis R., Novick R. P.. 1997; Bacterial interference caused by autoinducing peptide variants. Science276:2027–2030
    [Google Scholar]
  18. Johnsborg O., Diep D. B., Nes I. F.. 2003; Structural analysis of the peptide pheromone receptor PlnB, a histidine protein kinase from Lactobacillus plantarum . J Bacteriol185:6913–6920
    [Google Scholar]
  19. Kleerebezem M., Quadri L. E. N., Kuipers O. P., De Vos W. M.. 1997; Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol Microbiol24:895–904
    [Google Scholar]
  20. Kleerebezem M., Boekhorst J., van Kranenburg R., Molenaar D., Kuipers O. P., Leer R., Tarchini R., Peters S. A., Sandbrink H. M.. other authors 2003; Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A100:1990–1995
    [Google Scholar]
  21. Krogh A., Larsson B., von Heijne G., Sonnhammer E. L.. 2001; Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol305:567–580
    [Google Scholar]
  22. Makarova K. S., Koonin E. V.. 2007; Evolutionary genomics of lactic acid bacteria. J Bacteriol189:1199–1208
    [Google Scholar]
  23. Makarova K., Slesarev A., Wolf Y., Sorokin A., Mirkin B., Koonin E., Pavlov A., Pavlova N., Karamychev V.. other authors 2006; Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci U S A103:15611–15616
    [Google Scholar]
  24. Maldonado A., Jimenez-Diaz R., Ruiz-Barba J. L.. 2004; Induction of plantaricin production in Lactobacillus plantarum NC8 after coculture with specific gram-positive bacteria is mediated by an autoinduction mechanism. J Bacteriol186:1556–1564
    [Google Scholar]
  25. McAuliffe O., Ross R. P., Hill C.. 2001; Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol Rev25:285–308
    [Google Scholar]
  26. Mitsumori M., Xu L., Kajikawa H., Kurihara M., Tajima K., Hai J., Takenaka A.. 2003; Possible quorum sensing in the rumen microbial community: detection of quorum-sensing signal molecules from rumen bacteria. FEMS Microbiol Lett219:47–52
    [Google Scholar]
  27. Molenaar D., Bringel F., Schuren F. H., de Vos W. M., Siezen R. J., Kleerebezem M.. 2005; Exploring Lactobacillus plantarum genome diversity using microarrays. J Bacteriol187:6119–6127
    [Google Scholar]
  28. Møretrø T., Naterstad K., Wang E., Aasen I. M., Chaillou S., Zagorec M., Axelsson L.. 2005; Sakacin P non-producing Lactobacillus sakei strains contain homologues of the sakacin P gene cluster. Res Microbiol156:949–960
    [Google Scholar]
  29. Morfeldt E., Tegmark K., Arvidson S.. 1996; Transcriptional control of the agr -dependent virulence gene regulator, RNAIII, in Staphylococcus aureus . Mol Microbiol21:1227–1237
    [Google Scholar]
  30. Nakayama J., Chen S., Oyama N., Nishiguchi K., Azab E. A., Tanaka E., Kariyama R., Sonomoto K.. 2006; Revised model for Enterococcus faecalis fsr quorum-sensing system: the small open reading frame fsrD encodes the gelatinase biosynthesis-activating pheromone propeptide corresponding to staphylococcal AgrD. J Bacteriol188:8321–8326
    [Google Scholar]
  31. Nes I. F., Eijsink V. G. H.. 1999; Regulation of group II peptide bacteriocin synthesis by quorum-sensing mechanisms. In Cell–Cell Signaling in Bacteria pp175–192 Edited by Dunny G. M., Winans S. C. Washington, DC: American Society for Microbiology;
  32. Nikolskaya A. N., Galperin M. Y.. 2002; A novel type of conserved DNA-binding domain in the transcriptional regulators of the AlgR/AgrA/LytR family. Nucleic Acids Res30:2453–2459
    [Google Scholar]
  33. Ouwehand A. C., Salminen S., Isolauri E.. 2002; Probiotics: an overview of beneficial effects. Antonie Van Leeuwenhoek82:279–289
    [Google Scholar]
  34. Parkinson J. S., Kofoid E. C.. 1992; Communication modules in bacterial signaling proteins. Annu Rev Genet26:71–112
    [Google Scholar]
  35. Pridmore R. D., Berger B., Desiere F., Vilanova D., Barretto C., Pittet A. C., Zwahlen M. C., Rouvet M., Altermann E.. other authors 2004; The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci U S A101:2512–2517
    [Google Scholar]
  36. Qin X., Singh K. V., Weinstock G. M., Murray B. E.. 2001; Characterization of fsr , a regulator controlling expression of gelatinase and serine protease in Enterococcus faecalis OG1RF. J Bacteriol183:3372–3382
    [Google Scholar]
  37. Qiu R., Pei W., Zhang L., Lin J., Ji G.. 2005; Identification of the putative staphylococcal AgrB catalytic residues involving the proteolytic cleavage of AgrD to generate autoinducing peptide. J Biol Chem280:16695–16704
    [Google Scholar]
  38. Quadri L. E. N., Kleerebezem M., Kuipers O. P., de Vos W. M., Roy K. L., Vederas J. C., Stiles M. E.. 1997; Characterization of a locus from Carnobacterium piscicola LV17B involved in bacteriocin production and immunity: evidence for global inducer-mediated transcriptional regulation. J Bacteriol179:6163–6171
    [Google Scholar]
  39. Risøen P. A., Brurberg M. B., Eijsink V. G. H., Nes I. F.. 2000; Functional analysis of promoters involved in quorum sensing-based regulation of bacteriocin production in Lactobacillus . Mol Microbiol37:619–628
    [Google Scholar]
  40. Schauder S., Shokat K., Surette M. G., Bassler B. L.. 2001; The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol Microbiol41:463–476
    [Google Scholar]
  41. Schultz J., Milpetz F., Bork P., Ponting C. P.. 1998; smart, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A95:5857–5864
    [Google Scholar]
  42. Scott K. P., Martin J. C., Campbell G., Mayer C. D., Flint H. J.. 2006; Whole-genome transcription profiling reveals genes up-regulated by growth on fucose in the human gut bacterium “ Roseburia inulinivorans ”. J Bacteriol188:4340–4349
    [Google Scholar]
  43. Siezen R. J., Van Enckevort F. H. J., Kleerebezem M., Teusink B.. 2004; Genome data mining of lactic acid bacteria: the impact of bioinformatics. Curr Opin Biotechnol15:105–115
    [Google Scholar]
  44. Sturme M. H. J., Kleerebezem M., Nakayama J., Akkermans A. D. L., Vaughan E. E., de Vos W. M.. 2002; Cell to cell communication by autoinducing peptides in gram-positive bacteria. Antonie Van Leeuwenhoek81:233–243
    [Google Scholar]
  45. Sturme M. H. J., Nakayama J., Molenaar D., Murakami Y., Kunugi R., Fujii T., Vaughan E. E., Kleerebezem M., de Vos W. M.. 2005; An agr -like two-component regulatory system in Lactobacillus plantarum is involved in the production of a novel cyclic peptide and regulation of adherence. J Bacteriol187:5224–5235
    [Google Scholar]
  46. Sun J., Daniel R., Wagner-Dobler I., Zeng A. P.. 2004; Is autoinducer-2 a universal signal for interspecies communication: a comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways. BMC Evol Biol4:36
    [Google Scholar]
  47. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882
    [Google Scholar]
  48. Van de Guchte M., Penaud S., Grimaldi C., Barbe V., Bryson K., Nicolas P., Robert C., Oztas S., Mangenot S.. other authors 2006; The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc Natl Acad Sci U S A103:9274–9279
    [Google Scholar]
  49. Van der Heijden R. T., Snel B., Van Noort V., Huynen M. A.. 2007; Orthology prediction at scalable resolution by phylogenetic tree analysis. BMC Bioinformatics8:83
    [Google Scholar]
  50. Vaughan E. E., De Vries M. C., Zoetendal E. G., Ben-Amor K., Akkermans A. D. L., deVos W. M.. 2002; The intestinal LABs. Antonie Van Leeuwenhoek82:341–352
    [Google Scholar]
  51. Volz K.. 1993; Structural conservation in the CheY-superfamily. Biochemistry32:11741–11753
    [Google Scholar]
  52. Weinrauch Y., Guillen N., Dubnau D. A.. 1989; Sequence and transcription mapping of Bacillus subtilis competence genes comB and comA , one of which is related to a family of bacterial regulatory determinants. J Bacteriol171:5362–5375
    [Google Scholar]
  53. Weinrauch Y., Penchev R., Dubnau E., Smith I., Dubnau D.. 1990; A Bacillus subtilis regulatory gene product for genetic competence and sporulation resembles sensor protein members of the bacterial two-component signal-transduction systems. Genes Dev4:860–872
    [Google Scholar]
  54. Xavier K. B., Bassler B. L.. 2003; LuxS quorum sensing: more than just a numbers game. Curr Opin Microbiol6:191–197
    [Google Scholar]
  55. Zhang L., Ji G.. 2004; Identification of a staphylococcal AgrB segment(s) responsible for group-specific processing of AgrD by gene swapping. J Bacteriol186:6706–6713
    [Google Scholar]
  56. Zulty J. J., Barcak G. J.. 1995; Identification of a DNA transformation gene required for com101A + expression and supertransformer phenotype in Haemophilus influenzae . Proc Natl Acad Sci U S A92:3616–3620
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/012831-0
Loading
/content/journal/micro/10.1099/mic.0.2007/012831-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error