1887

Abstract

is one of the most extensively studied bacterial species in terms of physiology, genetics, cell culture and development. As a very diverse group, the serovars of display a spectrum of host specificities ranging from a broad host range to strictly host-adapted variants. This study utilized a classic proteomic approach combining 2D gel electrophoresis and mass spectrometry for the comparative analysis of the proteomes of serovars Typhimurium, Enteritidis, Choleraesuis, Pullorum and Dublin. The comparative analysis revealed species-specific protein factors with no significant change in expression amongst all isolates, as well as proteins with fluctuating expression levels between serovars and strains. Examples include an isoform of SodA specific for serovar Typhimurium, the third isoform of the lysine arginine ornithine (LAO)-binding amino acid transporter specific for serovar Pullorum, and the enzyme GabD found to be unique to serovar Choleraesuis. Overall the study demonstrated the importance of using multiple isolates when characterizing the expression patterns of bacteria in order to account for the intrinsic diversity of a bacterial population and revealed several factors with potential roles in host adaptation and pathogenicity of the serovars of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/010140-0
2007-12-01
2020-04-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/12/4183.html?itemId=/content/journal/micro/10.1099/mic.0.2007/010140-0&mimeType=html&fmt=ahah

References

  1. Baümler A. J.. 1997; The record of horizontal gene transfer in Salmonella . Trends Microbiol5:318–322
    [Google Scholar]
  2. Baümler A. J., Tsolis R. M., Fight T. A., Adams L. G.. 1998; Evolution and host adaptation of Salmonella enterica . Infect Immun66:4579–4587
    [Google Scholar]
  3. Boos W., Shuman H.. 1998; Maltose/maltodextrin system of Escherichia coli : transport, metabolism, and regulation. Microbiol Mol Biol Rev62:204–229
    [Google Scholar]
  4. Coldham N. G., Woodward M. J.. 2004; Characterisation of Salmonella typhimurium proteome by semi-automated two-dimensional HPLC-mass spectrometry: detection of proteins implicated in multiple antibiotic resistance. J Proteome Res3:595–603
    [Google Scholar]
  5. Cordwell S. J., Larsen M. R., Cole R. T., Walsh B. J.. 2002; Comparative proteomics of Staphylococcus aureus and the response of methicillin-resistant and methicillin-sensitive strains to Triton X-100. Microbiology148:2765–2781
    [Google Scholar]
  6. Crosa J. H., Brenner D. J., Ewing W. H., Falkow S.. 1973; Molecular relationships among Salmonelleae. J Bacteriol115:307–315
    [Google Scholar]
  7. Death A., Ferenci T.. 1993; The importance of the binding-protein-dependent Mgl system to the transport of glucose in Escherichia coli growing on low sugar concentrations. Res Microbiol144:529–537
    [Google Scholar]
  8. Edwards R. A., Olsen G. J., Maloy S. R.. 2002; Comparative genomics of closely related salmonellae. Trends Microbiol10:94–100
    [Google Scholar]
  9. Encheva V., Gharbia S. E., Wait R., Begum S., Shah H. N.. 2005; Proteome analysis of serovars Typhimurium and Pullorum of Salmonella enterica subspecies I using two dimensional gel electrophoresis and LC/MS/MS. BMC Microbiol5:42
    [Google Scholar]
  10. Jeno P., Mini T., Moes S., Hintermann E., Horst M.. 1995; Internal sequences from proteins digested in polyacrylamide gels. Anal Biochem224:75–82
    [Google Scholar]
  11. Kingsley R. A., Baümler A. J.. 2002; Pathogenicity islands and host adaptation of Salmonella serovars. Curr Top Microbiol Immunol264:67–87
    [Google Scholar]
  12. Kingsley R. A., van Amsterdam K., Kramer N., Baümler A. J.. 2000; The shdA gene is restricted to serotypes of Salmonella enterica subspecies I and contributes to efficient and prolonged fecal shedding. Infect Immun68:2720–2727
    [Google Scholar]
  13. Kustu S. G., McFarlend N. C., Hui S. P., Esmon B., Ames G. F.-L.. 1979; Nitrogen control of Salmonella typhimurium : co-regulation of synthesis of glutamine synthetase and amino acid transport systems. J Bacteriol138:218–234
    [Google Scholar]
  14. Neidhardt F. C.. 1996; Escherichia coli and Salmonella: Cellular and Molecular Biology vol. 1 Washington, DC: American Society for Microbiology;
  15. O'Connor C. D., Farris M., Fowler R., Qi S. Y.. 1997; The proteome of Salmonella enterica serovar Typhimurium: current progress on its determination and some applications. Electrophoresis18:1483–1490
    [Google Scholar]
  16. Park M. R., Lee E. G., Kim Y. H., Jung T. S., Shin Y. S., Shin G. W., Cha H. G., Kim G. S.. 2003; Reference map of soluble proteins from Salmonella enterica serovar Enteritidis by two-dimensional electrophoresis. J Vet Sci4:143–149
    [Google Scholar]
  17. Perkins D. N., Pappin D. J. C., Creasy D. M., Cottrell J. S.. 1999; Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis20:3551–3567
    [Google Scholar]
  18. Popoff M. Y., Bockemuhl J., Gheesling L. L.. 2003; Supplement 2001 (no. 45) to the Kauffmann–White scheme. Res Microbiol154:173–174
    [Google Scholar]
  19. Prouty A. M., Brodsky I. E., Falkow S., Gunn J. S.. 2004; Bile-salt mediated induction of antimicrobial and bile resistance of Salmonella typhimurium . Microbiology150:775–783
    [Google Scholar]
  20. Qi S.-Y., Moir A., O'Connor D. C.. 1996; Proteome of Salmonella typhimurium SL1344: identification of novel abundant cell envelope proteins and assignment to a two-dimensional reference map. J Bacteriol178:5032–5038
    [Google Scholar]
  21. Rabilloud T., Valette C., Lawrence J. J.. 1994; Sample application by in-gel rehydration improves the resolution of two-dimensional electrophoresis with immobilized pH gradients in the first dimension. Electrophoresis15:1552–1558
    [Google Scholar]
  22. Shevchenko A., Wilm M., Vorm O., Mann M.. 1996; Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem68:850–858
    [Google Scholar]
  23. Stanley J., Baquar N.. 1994; Phylogenetics of Salmonella enteritidis . Int J Food Microbiol21:79–87
    [Google Scholar]
  24. Tsolis R. M., Baümler A. J., Heffron F.. 1995; Role of Salmonella typhimurium Mn-superoxide dismutase (SodA) in protection against early killing by J774 macrophages. Infect Immun63:1739–1744
    [Google Scholar]
  25. van der Straaten T., Zulianello L., van Diepen A., Granger D. L., Janssen R., van Dissel J. T.. 2004; Salmonella enterica serovar Typhimurium RamA, intracellular oxidative stress response, and bacterial virulence. Infect Immun72:996–1003
    [Google Scholar]
  26. Voigt B., Schweder T., Becher D., Ehrenreich A., Gottschalk G., Feesche J., Maurer K.-H., Hecker M.. 2004; A proteomic view of cell physiology of Bacillus licheniformis . Proteomics4:1465–1490
    [Google Scholar]
  27. Wait R., Gianazza E., Eberini I., Sironi L., Dunn M., Gemeiner M., Miller I.. 2001; Proteins of rat serum, urine, and cerebrospinal fluid: VI. Further protein identifications and interstrain comparison. Electrophoresis22:3043–3052
    [Google Scholar]
  28. Wait R., Miller I., Eberini I., Cairoli F., Veronesi C., Battocchio M., Gemeiner M., Gianazza E.. 2002; Strategies for proteomics with incompletely characterized genomes: The proteome of Bos taurus serum. Electrophoresis23:3418–3427
    [Google Scholar]
  29. Wilm M., Shevchenko A., Houthaeve T., Breit S., Schweigerer L., Fotsis T.. 1996; Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature379:466–469
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/010140-0
Loading
/content/journal/micro/10.1099/mic.0.2007/010140-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error