1887

Abstract

Structural analysis of mycolic acids from (including some ‘’ strains) was carried out using H-NMR and MS. Results indicated that this species presents a general pattern of -, ′- and keto-mycolates. -Mycolates were composed of a complex mixture of 82 to 89 carbon atoms (C82–C89), with the predominant molecular species containing two di-substituted cyclopropane rings. Among keto-mycolates (C84–C89), those containing one di-substituted cyclopropane ring were the most abundant. The ′-mycolates were monounsaturated (C64, C66). According to MS and H-NMR data, the strains studied differed in fine structural details of -mycolates and keto-mycolates. Notably, strain ‘’ TMC 5135 (belonging to the ‘’ group, and considered as highly immunogenic in tuberculosis and leprosy) presented a particular composition of -mycolates, with a major component (C87) containing one plus one di-substituted cyclopropane ring, unlike the type strain of and other strains of the ‘’ group (IPK-220 and IPK-337R), in which the major component (C84) contained two di-substituted cyclopropane rings. In spite of this finding, the ‘’ strains were closely related to each other and mainly differed from the type strain of in some details of the fine structure of keto-mycolates. The present work indicated that within an identical general pattern of mycolic acids, there is a complex composition in and structural variation among different strains, as reported for pathogenic species of the genus. Noteworthy was the particular composition of -mycolates in strain ‘’ TMC 5135.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/011262-0
2007-12-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/12/4159.html?itemId=/content/journal/micro/10.1099/mic.0.2007/011262-0&mimeType=html&fmt=ahah

References

  1. Astola, J., Muñoz, M., Sempere, M., Coll, P., Luquin, M. & Valero-Guillén, P. L. ( 2002; ). The HPLC-double-cluster pattern of some Mycobacterium gordonae strains is due to their dicarboxy-mycolate content. Microbiology 148, 3119–3127.
    [Google Scholar]
  2. Baess, I. & Magnusson, M. ( 1982; ). Classification of Mycobacterium simiae by means of comparative reciprocal intradermal sensitin testing on guinea pigs and deoxyribonucleic acid hybridization. Acta Pathol Microbiol Immunol Scand [B] 90, 101–107.
    [Google Scholar]
  3. Barry, C. E., III, Lee, R. E., Mdluli, K., Sampson, A. E., Schroeder, B. G., Slayden, R. A. & Yuan, Y. ( 1998; ). Mycolic acids: structure, biosynthesis and physiological functions. Prog Lipid Res 37, 143–179.[CrossRef]
    [Google Scholar]
  4. Beckman, E. M., Porcelli, S. A., Morita, C. T., Behar, S. M., Furlong, S. T. & Brenner, M. B. ( 1994; ). Recognition of a lipid antigen by CD1-restricted αβ + T cells. Nature 372, 691–694.[CrossRef]
    [Google Scholar]
  5. Bhatt, A., Fujiwara, N., Bhatt, K., Gurcha, S. S., Kremer, L., Cheng, B., Chan, J., Porcelli, S. A., Kobayashi, K. & other authors ( 2007; ). Deletion of kasB in Mycobacterium tuberculosis causes loss of acid-fastness and subclinical latent tuberculosis in immunocompetent mice. Proc Natl Acad Sci U S A 104, 5157–5162.[CrossRef]
    [Google Scholar]
  6. Brennan, P. J. & Nikaido, H. ( 1995; ). The envelope of mycobacteria. Annu Rev Biochem 64, 29–63.[CrossRef]
    [Google Scholar]
  7. Butler, W. R. & Guthertz, L. S. ( 2001; ). Mycolic acid analysis by high-performance liquid chromatography for identification of Mycobacterium species. Clin Microbiol Rev 14, 704–726.[CrossRef]
    [Google Scholar]
  8. Daffé, M. & Draper, P. ( 1998; ). The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol 39, 131–203.
    [Google Scholar]
  9. de la Salle, H., Mariotti, S., Angenieux, C., Gilleron, M., García-Alles, L.-F., Malm, D., Berg, T., Paoletti, S., Maître, B. & other authors ( 2005; ). Assistance of microbial glycolipid antigen processing by CD1e. Science 310, 1321–1324.[CrossRef]
    [Google Scholar]
  10. Dubnau, E., Chan, J., Raynaud, C., Mohan, V. P., Lanéelle, M. A., Yu, K., Quémard, A., Smith, I. & Daffé, M. ( 2000; ). Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Mol Microbiol 36, 630–637.
    [Google Scholar]
  11. Falkinham, J. O., III ( 1996; ). Epidemiology of infection by nontuberculous mycobacteria. Clin Microbiol Rev 9, 177–215.
    [Google Scholar]
  12. Geisel, R. E., Sakamoto, K., Russel, D. G. & Rhoades, E. R. ( 2005; ). In vivo activity of released cell wall lipids of Mycobacterium bovis bacillus Calmette–Guérin is due principally to trehalose mycolates. J Immunol 174, 5007–5015.[CrossRef]
    [Google Scholar]
  13. Khoo, K. H., Chaterjee, D., Dell, A., Morris, H. R., Brennan, P. J. & Draper, P. ( 1996; ). Novel O-methylated terminal glucuronic acid characterizes the polar glycopeptidolipids of Mycobacterium habana TMC 5135. J Biol Chem 271, 12333–12342.[CrossRef]
    [Google Scholar]
  14. Mederos, L. M., Gutiérrez, A. M. & Valdivia, J. A. ( 1992; ). Utilization of a new culture medium in biochemical tests for the mycobacterial classification. Mem Inst Oswaldo Cruz 87, 441 [CrossRef]
    [Google Scholar]
  15. Mederos, L. M., Valdivia, J. A. & Valero-Guillén, P. L. ( 1998; ). Analysis of lipids reveals differences between ‘Mycobacterium habana’ and Mycobacterium simiae. Microbiology 144, 1181–1188.[CrossRef]
    [Google Scholar]
  16. Mederos, L. M., Valdivia, J. A. & Valero-Guillén, P. L. ( 2006; ). Lipids of ‘Mycobacterium habana’, a synonym of Mycobacterium simiae with vaccine potential. Tuberculosis (Edinb) 86, 324–329.[CrossRef]
    [Google Scholar]
  17. Meissner, G. & Schröder, K. H. ( 1975; ). Relationships between Mycobacterium simiae and Mycobacterium habana. Am Rev Respir Dis 111, 196–200.
    [Google Scholar]
  18. Minnikin, D. E. ( 1982; ). Lipids: complex lipids. In The Biology of the Mycobacteria, vol. 1, pp. 95–184. Edited by C. Ratledge & J. L. Stanford. London: Academic Press.
  19. Minnikin, D. E., Hutchinson, I. G., Caldicott, A. B. & Goodfellow, M. ( 1980; ). Thin-layer chromatography of methanolysates of mycolic-acid containing bacteria. J Chromatogr 188, 221–233.[CrossRef]
    [Google Scholar]
  20. Minnikin, D. E., Minnikin, S. M., Parlett, J. H., Goodfellow, M. & Magnusson, M. ( 1984; ). Mycolic acid patterns of some species of Mycobacterium. Arch Microbiol 139, 225–231.
    [Google Scholar]
  21. Rao, V., Fujiwara, N., Porcelli, S. A. & Glickman, M. S. ( 2005; ). Mycobacterium tuberculosis controls host innate immune activation through cyclopropane modification of a glycolipid effector molecule. J Exp Med 201, 535–543.[CrossRef]
    [Google Scholar]
  22. Rao, V., Gao, F., Chen, B., Jacobs, W. R., Jr & Glickman, M. S. ( 2006; ). Trans-cyclopropanation of mycolic acids on trehalose dimycolate suppresses Mycobacterium tuberculosis-induced inflammation and virulence. J Clin Invest 116, 1660–1667.[CrossRef]
    [Google Scholar]
  23. Rhoades, E., Hsu, F. F., Torrelles, J. B., Turk, J., Chaterjee, D. & Russell, D. G. ( 2003; ). Identification and macrophage-activating activity of glycolipids released from intracellular Mycobacterium bovis BCG. Mol Microbiol 48, 875–888.[CrossRef]
    [Google Scholar]
  24. Riley, L. W. ( 2006; ). Of mice, men, and elephants: Mycobacterium tuberculosis cell envelope and pathogenesis. J Clin Invest 116, 1475–1478.[CrossRef]
    [Google Scholar]
  25. Schaible, U. E. & Kaufmann, S. H. E. ( 2000; ). CD1 and CD1-restricted T cells in infections with intracellular bacteria. Trends Microbiol 8, 419–425.[CrossRef]
    [Google Scholar]
  26. Takayama, K., Wang, C. & Besra, G. S. ( 2005; ). Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev 18, 81–101.[CrossRef]
    [Google Scholar]
  27. Valdés, I., Montoro, E., Valdidia, J. A., Aguilar, D., Orozco, E. & Hernández-Pando, R. ( 2007a; ). Immunogenicity induced by three strains of Mycobacterium habana in BALB/c model of progressive pulmonary tuberculosis. In TB07 Vaccines. International Workshop on Tuberculosis Vaccines. Program and Abstract Book. P37.
  28. Valdés, I., Montoro, E., Valdidia, J. A., Orozco, E., Aguilar, D. & Hernández-Pando, R. ( 2007b; ). Virulence of Mycobacterium habana strains in a BALB/c model of progressive pulmonary tuberculosis. In TB07 Vaccines. International Workshop on Tuberculosis Vaccines. Program and Abstract Book. P38.
  29. Valdivia, J. A. ( 1973; ). Mycobacterium habana: clinical and epidemiological significance. Ann Soc Belg Med Trop 53, 263–266.
    [Google Scholar]
  30. Watanabe, M., Ohta, A., Sasaki, A. & Minnikin, D. E. ( 1999; ). Structure of a new glycolipid from the Mycobacterium aviumMycobacterium intracellulare complex. J Bacteriol 181, 2293–2297.
    [Google Scholar]
  31. Watanabe, M., Aoyagi, Y., Ridell, M. & Minnikin, D. E. ( 2001; ). Separation and characterization of individual mycolic acids in representative mycobacteria. Microbiology 147, 1825–1837.
    [Google Scholar]
  32. Watanabe, M., Aoyagi, Y., Mitome, H., Fujita, T., Naoki, H., Ridell, M. & Minnikin, D. E. ( 2002; ). Location of functional groups in mycobacterial meroaldhyde chains; the recognition of new structural principles in mycolic acids. Microbiology 148, 1881–1902.
    [Google Scholar]
  33. Weiszfeiler, J. G. & Karczag, E. ( 1976; ). Synonymy of Mycobacterium simiae Karasseva et al. 1965 and Mycobacterium habana Valdivia et al. 1971. Int J Syst Bacteriol 26, 474–477.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/011262-0
Loading
/content/journal/micro/10.1099/mic.0.2007/011262-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error