1887

Abstract

Numerous prokaryote genomes contain structures known as clustered regularly interspaced short palindromic repeats (CRISPRs), composed of 25–50 bp repeats separated by unique sequence spacers of similar length. CRISPR structures are found in the vicinity of four genes named to . analysis revealed another cluster of three genes associated with CRISPR structures in many bacterial species, named here as , and , and also revealed a certain number of spacers that have homology with extant genes, most frequently derived from phages, but also derived from other extrachromosomal elements. Sequence analysis of CRISPR structures from 24 strains of and confirmed the homology of spacers with extrachromosomal elements. Phage sensitivity of strains appears to be correlated with the number of spacers in the CRISPR locus the strain carries. The authors suggest that the spacer elements are the traces of past invasions by extrachromosomal elements, and hypothesize that they provide the cell immunity against phage infection, and more generally foreign DNA expression, by coding an anti-sense RNA. The presence of gene fragments in CRISPR structures and the nuclease motifs in genes of both cluster types suggests that CRISPR formation involves a DNA degradation step.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28048-0
2005-08-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/8/mic1512551.html?itemId=/content/journal/micro/10.1099/mic.0.28048-0&mimeType=html&fmt=ahah

References

  1. Bolotin A., Quinquis B., Renault P. 20 other authors 2004; Complete genome sequence and comparative analysis of the dairy bacterium Streptococcus thermophilus. Nat Biotechnol 22:1554–1558 [CrossRef]
    [Google Scholar]
  2. Brussow H., Hendrix R. W. 2002; Phage genomics, small is beautiful. Cell 108:13–16 [CrossRef]
    [Google Scholar]
  3. Coffey A., Ross R. P. 2002; Bacteriophage-resistance systems in dairy starter strains, molecular analysis to application. Antonie van Leeuwenhoek 82:303–321 [CrossRef]
    [Google Scholar]
  4. Desiere F., Lucchini S., Canchaya C., Ventura M., Brussow H. 2002; Comparative genomics of phages and prophages in lactic acid bacteria. Antonie van Leeuwenhoek 82:73–91 [CrossRef]
    [Google Scholar]
  5. Dryden D. T., Murray N. E., Rao D. N. 2001; Nucleoside triphosphate-dependent restriction enzymes. Nucleic Acids Res 29:3728–3741 [CrossRef]
    [Google Scholar]
  6. Fayard B. 1993; Caractérisation de 69 bactériophages of Streptococcus salivarius subsp. thermophilus incluant 10 bactériophages tempérés. PhD thesis University Nancy I; France:
  7. Groenen P. M., Bunschoten A. E., van Soolingen D, van Embden J. D. 1993; Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis, application for strain differentiation by a novel typing method. Mol Microbiol 43:1057–1065
    [Google Scholar]
  8. Higgins D. G., Sharp P. M. 1989; Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl Biosci 43:151–153
    [Google Scholar]
  9. Hoe N., Nakashima K., Grigsby D. 7 other authors 1999; Rapid molecular genetic subtyping of serotype M1 group A Streptococcus strains. Emerg Infect Dis 43:254–263
    [Google Scholar]
  10. Jansen R., Embden J. D. A., van Gaastra W., Schouls L. M. 2002; Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43:1565–1575 [CrossRef]
    [Google Scholar]
  11. Kamerbeek J., Schouls L., Kolk A. 8 other authors 1997; Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 43:907–914
    [Google Scholar]
  12. Le Marrec C., Walsh L., Stanley E., Vlegels E., Moineau S., Heinze P., Fitzgerald G., Fayard B, van Sinderen D. 1997; Two groups of bacteriophages infecting Streptococcus thermophilus can be distinguished on the basis of mode of packaging and genetic determinants for major structural proteins. Appl Environ Microbiol 63:3246–3253
    [Google Scholar]
  13. Makarova K. S., Aravind L., Grishin N. V., Rogozin I. B., Koonin E. V. 2002; A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res 30:482–496 [CrossRef]
    [Google Scholar]
  14. Maté, M. J., Kleanthous C. 2004; Structure-based analysis of the metal-dependent mechanism of H-N-H endonucleases. J Biol Chem 279:34763–34769 [CrossRef]
    [Google Scholar]
  15. Mojica F. J., Ferrer C., Juez G., Rodriguez-Valera F. 1995; Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol Microbiol 43:85–93
    [Google Scholar]
  16. Mojica F. J., Diez-Villasenor C., Soria E., Juez G. 2000; Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol 43:244–246
    [Google Scholar]
  17. Peng X., Shen B., Chen L., She Q., Garrett R. A, Brügger K. 2003; Genus-specific protein binding to the large clusters of DNA repeats (Short Regularly Spaced Repeats) present in Sulfolobus genomes. J Bacteriol 185:2410–2417 [CrossRef]
    [Google Scholar]
  18. Pourcel C., Salvignol G., Vergnaud G. 2005; CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151:653–663 [CrossRef]
    [Google Scholar]
  19. Saravanan M., Bujnicki J. M., Cymerman I. A., Rao D. N., Nagaraja V. 2004; Type II restriction endonuclease R.KpnI is a member of the HNH nuclease superfamily. Nucleic Acids Res 32:6129–6135 [CrossRef]
    [Google Scholar]
  20. Schouls L. M., Reulen S., Duim B., Wagenaar J. A., Willems R. J. L., Dingle K. E., Colles F. M, van Embden J. D. 2003; Comparative genotyping of Campylobacter jejuni by amplified fragment length polymorphism, multilocus sequence typing, and short repeat sequencing: strain diversity, host range, and recombination. J Clin Microbiol 41:15–26 [CrossRef]
    [Google Scholar]
  21. She Q., Phan H., Garrett R. A., Albers S. V., Stedman K. M., Zillig W. 1998; Genetic profile of pNOB8 from Sulfolobus, the first conjugative plasmid from an archaeon. Extremophiles 2:417–425 [CrossRef]
    [Google Scholar]
  22. Simpson C. L., Giffard P. M., Jacques N. A. 1993; A method for the isolation of RNA from Streptococcus salivarius and its application to the transcriptional analysis of the gtfJK locus. FEMS Microbiol Lett 108:93–97 [CrossRef]
    [Google Scholar]
  23. Singleton M. R., Dillingham M. S., Gaudier M., Kowalczykowski S. C., Wigley D. B. 2004; Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks. Nature 432:187–193 [CrossRef]
    [Google Scholar]
  24. Stanley E., Fitzgerald G. F, van Sinderen D. 1999; Characterisation of Streptococcus thermophilus CNRZ1205 and its cured and re-lysogenised derivatives. FEMS Microbiol Lett 176:503–510 [CrossRef]
    [Google Scholar]
  25. Sturino J. M., Klaenhammer T. R. 2002; Expression of antisense RNA targeted against Streptococcus thermophilus bacteriophages. Appl Environ Microbiol 68:588–596 [CrossRef]
    [Google Scholar]
  26. Sturino J. M., Klaenhammer T. R. 2004; Antisense RNA targeting of primase interferes with bacteriophage replication in Streptococcus thermophilus. Appl Environ Microbiol 70:1735–1743 [CrossRef]
    [Google Scholar]
  27. Tang T. H., Bachellerie J. P., Rozhdestvensky T., Bortolin M. L., Huber H., Drungowski M., Elge T., Brosius J., Huttenhofer A. 2002; Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus. Proc Natl Acad Sci U S A 99:7536–7541 [CrossRef]
    [Google Scholar]
  28. Tang T. H., Polacek N., Zywicki M., Huber H., Brugger K., Garrett R., Bachellerie J. P., Huettenhofer A. 2005; Identification of novel non-coding RNAs as potential anti-sense regulators in the archaeon Sulfolobus solfataricus. Mol Microbiol 55:469–481
    [Google Scholar]
  29. Terzaghi B. E., Sandine W. E. 1975; Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol 29:807–813
    [Google Scholar]
  30. van Belkum A., Scherer S., van Alphen L., Verbrugh H. 1998; Short-sequence DNA repeats in prokaryotic genomes. Microbiol Mol Biol Rev 43:275–293
    [Google Scholar]
  31. Walker D. C., Georgiou T., Pommer A. J., Walker D., Moore G. R., Kleanthous C., James R. 2002; Mutagenic scan of the H-N-H motif of colicin E9: implications for the mechanistic enzymology of colicins, homing enzymes & apoptotic endonucleases. Nucleic Acids Res 30:3225–3234 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28048-0
Loading
/content/journal/micro/10.1099/mic.0.28048-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error