1887

Abstract

Genes and , encoding a multidrug efflux transporter in the halophilic bacterium , have been cloned using a drug-hypersusceptible strain as the host. Cells of KAM33 (Δ Δ) carrying the region from conferred much higher MICs for a variety of antimicrobial agents than did control cells. Cells possessing VmeAB under energized conditions maintained very low intracellular concentrations of ethidium. This was as expected for an energy-dependent efflux system, and supports the notion – based on sequence homology – that VmeAB belongs to the resistance nodulation cell division (RND) family of multidrug efflux transporters. It is likely that VmeAB forms functional complexes with the outer-membrane protein TolC in , because introduction of into cells of KAM43, which lacks the gene, failed to elevate the MICs for any of the antimicrobial agents tested. Therefore, a homologue of was also cloned, designated , and was introduced together with into cells of KAM43. The MICs of all agents tested were raised and were comparable to the values observed in KAM33 harbouring a plasmid carrying . Finally, a -deficient mutant of was constructed (designated TM3). TM3 showed slightly higher susceptibility than the parental to some antimicrobial agents. Survival rate of the TM3 when exposed to deoxycholate decreased compared with that of the parent.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/009597-0
2007-12-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/12/4129.html?itemId=/content/journal/micro/10.1099/mic.0.2007/009597-0&mimeType=html&fmt=ahah

References

  1. Baumann, P. & Schubert, R. H. W. ( 1984; ). Family II. Vibrionaceae. In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 516–550. Edited by N. R. Krieg & J. G. Holt. Baltimore: Williams & Wilkins.
  2. Berns, K. I. & Thomas, C. A., Jr ( 1965; ). Isolation of high molecular weight DNA from Haemophilus influenzae. J Mol Biol 11, 476–490.[CrossRef]
    [Google Scholar]
  3. Bina, J. E. & Mekalanos, J. J. ( 2001; ). Vibrio cholerae tolC is required for bile resistance and colonization. Infect Immun 69, 4681–4685.[CrossRef]
    [Google Scholar]
  4. Bina, J. E., Provenzano, D., Wang, C., Bina, X. R. & Mekalanos, J. J. ( 2006; ). Characterization of the Vibrio cholerae vexAB and vexCD efflux systems. Arch Microbiol 186, 171–181.[CrossRef]
    [Google Scholar]
  5. Cabanillas-Beltran, H., LLausás-Magaña, E., Romero, R., Espinoza, A., Garcia-Gasca, A., Nishibuchi, M., Ishibashi, M. & Gomez-Gil, B. ( 2006; ). Outbreak of gastroenteritis caused by the pandemic Vibrio parahaemolyticus O3 : K6 in Mexico. FEMS Microbiol Lett 265, 76–80.[CrossRef]
    [Google Scholar]
  6. CDC ( 2006; ). Vibrio parahaemolyticus infections associated with consumption of raw shellfish – three states, 2006. MMWR Morb Mortal Wkly Rep 55, 854–856.
    [Google Scholar]
  7. Chen, J., Morita, Y., Huda, M. N., Kuroda, T., Mizushima, T. & Tsuchiya, T. ( 2002; ). VmrA, a member of a novel class of Na+-coupled multidrug efflux pumps from Vibrio parahaemolyticus. J Bacteriol 184, 572–576.[CrossRef]
    [Google Scholar]
  8. Chen, J., Kuroda, T., Huda, M. N., Mizushima, T. & Tsuchiya, T. ( 2003; ). An RND-type multidrug efflux pump SdeXY from Serratia marcescens. J Antimicrob Chemother 52, 176–179.[CrossRef]
    [Google Scholar]
  9. Cherepanov, P. P. & Wackernagel, W. ( 1995; ). Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158, 9–14.[CrossRef]
    [Google Scholar]
  10. Datsenko, K. A. & Wanner, B. L. ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640–6645.[CrossRef]
    [Google Scholar]
  11. Fralick, J. A. ( 1996; ). Evidence that TolC is required for functioning of the Mar/AcrAB efflux pump of Escherichia coli. J Bacteriol 178, 5803–5805.
    [Google Scholar]
  12. Hamashima, H., Iwasaki, M. & Arai, T. ( 1995; ). A simple and rapid method for transformation of Vibrio species by electroporation. Methods Mol Biol 47, 155–160.
    [Google Scholar]
  13. Hanahan, D., Jessee, J. & Bloom, F. R. ( 1991; ). Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol 204, 63–113.
    [Google Scholar]
  14. Hansen, L. H., Johannesen, E., Burmolle, M., Sorensen, A. H. & Sorensen, S. J. ( 2004; ). Plasmid-encoded multidrug efflux pump conferring resistance to olaquindox in Escherichia coli. Antimicrob Agents Chemother 48, 3332–3337.[CrossRef]
    [Google Scholar]
  15. Heidelberg, J. F., Eisen, J. A., Nelson, W. C., Clayton, R. A., Gwinn, M. L., Dodson, R. J., Haft, D. H., Hickey, E. K., Peterson, J. D. & other authors ( 2000; ). DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406, 477–483.[CrossRef]
    [Google Scholar]
  16. Heidelberg, J. F., Paulsen, I. T., Nelson, K. E., Gaidos, E. J., Nelson, W. C., Read, T. D., Eisen, J. A. & Seshadri, R. Ward, N. & other authors ( 2002; ). Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat Biotechnol 20, 1118–1123.[CrossRef]
    [Google Scholar]
  17. Henikoff, S. ( 1984; ). Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28, 351–359.[CrossRef]
    [Google Scholar]
  18. Herz, K., Vimont, S., Padan, E. & Berche, P. ( 2003; ). Roles of NhaA, NhaB, and NhaD Na+/H+ antiporters in survival of Vibrio cholerae in a saline environment. J Bacteriol 185, 1236–1244.[CrossRef]
    [Google Scholar]
  19. Huda, M. N., Chen, J., Morita, Y., Kuroda, T., Mizushima, T. & Tsuchiya, T. ( 2003; ). Gene cloning and characterization of VcrM, a Na+-coupled multidrug efflux pump, from Vibrio cholerae non-O1. Microbiol Immunol 47, 419–427.[CrossRef]
    [Google Scholar]
  20. Japanese Society of Chemotherapy ( 1990; ). Microbroth dilution methods for determination of minimum inhibitory concentrations. Chemotherapy 38, 102–105.
    [Google Scholar]
  21. Klein, J. R., Henrich, B. & Plapp, R. ( 1991; ). Molecular analysis and nucleotide sequence of the envCD operon of Escherichia coli. Mol Gen Genet 230, 230–240.[CrossRef]
    [Google Scholar]
  22. Kumar, A. & Worobec, E. A. ( 2005a; ). Cloning, sequencing, and characterization of the SdeAB multidrug efflux pump of Serratia marcescens. Antimicrob Agents Chemother 49, 1495–1501.[CrossRef]
    [Google Scholar]
  23. Kumar, A. & Worobec, E. A. ( 2005b; ). HasF, a TolC-homolog of Serratia marcescens, is involved in energy-dependent efflux. Can J Microbiol 51, 497–500.[CrossRef]
    [Google Scholar]
  24. Kumazawa, N. H. & Kato, E. ( 1985; ). Survival of Kanagawa-positive strains of Vibrio parahaemolyticus in a brackish-water area. J Hyg (Lond) 95, 299–307.[CrossRef]
    [Google Scholar]
  25. Kumazawa, N. H., Fukuma, N. & Komoda, Y. ( 1991; ). Attachment of Vibrio parahaemolyticus strains to estuarine algae. J Vet Med Sci 53, 201–205.[CrossRef]
    [Google Scholar]
  26. Kuroda, T., Mizushima, T. & Tsuchiya, T. ( 2005; ). Physiological roles of three Na+/H+ antiporters in the halophilic bacterium Vibrio parahaemolyticus. Microbiol Immunol 49, 711–719.[CrossRef]
    [Google Scholar]
  27. Li, X. Z., Nikaido, H. & Poole, K. ( 1995; ). Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa. Antimicrob Agents Chemother 39, 1948–1953.[CrossRef]
    [Google Scholar]
  28. Lozano-Leon, A., Torres, J., Osorio, C. R. & Martinez-Urtaza, J. ( 2003; ). Identification of tdh-positive Vibrio parahaemolyticus from an outbreak associated with raw oyster consumption in Spain. FEMS Microbiol Lett 226, 281–284.[CrossRef]
    [Google Scholar]
  29. Ma, D., Cook, D. N., Alberti, M., Pon, N. G., Nikaido, H. & Hearst, J. E. ( 1993; ). Molecular cloning and characterization of acrA and acrE genes of Escherichia coli. J Bacteriol 175, 6299–6313.
    [Google Scholar]
  30. Ma, D., Cook, D. N., Hearst, J. E. & Nikaido, H. ( 1994; ). Efflux pumps and drug resistance in gram-negative bacteria. Trends Microbiol 2, 489–493.[CrossRef]
    [Google Scholar]
  31. Makino, K., Oshima, K., Kurokawa, K., Yokoyama, K., Uda, T., Tagomori, K., Iijima, Y., Najima, M., Nakano, M. & other authors ( 2003; ). Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V. cholerae. Lancet 361, 743–749.[CrossRef]
    [Google Scholar]
  32. Masaoka, Y., Ueno, Y., Morita, Y., Kuroda, T., Mizushima, T. & Tsuchiya, T. ( 2000; ). A two-component multidrug efflux pump, EbrAB, in Bacillus subtilis. J Bacteriol 182, 2307–2310.[CrossRef]
    [Google Scholar]
  33. McLaughlin, J. B., DePaola, A., Bopp, C. A., Martinek, K. A., Napolilli, N. P., Allison, C. G., Murray, S. L., Thompson, E. C., Bird, M. M. & Middaugh, J. P. ( 2005; ). Outbreak of Vibrio parahaemolyticus gastroenteritis associated with Alaskan oysters. N Engl J Med 353, 1463–1470.[CrossRef]
    [Google Scholar]
  34. Mine, T., Morita, Y., Kataoka, A., Mizushima, T. & Tsuchiya, T. ( 1999; ). Expression in Escherichia coli of a new multidrug efflux pump, MexXY, from Pseudomonas aeruginosa. Antimicrob Agents Chemother 43, 415–417.[CrossRef]
    [Google Scholar]
  35. Morita, Y., Kodama, K., Shiota, S., Mine, T., Kataoka, A., Mizushima, T. & Tsuchiya, T. ( 1998; ). NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coli. Antimicrob Agents Chemother 42, 1778–1782.
    [Google Scholar]
  36. Morita, Y., Kataoka, A., Shiota, S., Mizushima, T. & Tsuchiya, T. ( 2000; ). NorM of Vibrio parahaemolyticus is an Na+-driven multidrug efflux pump. J Bacteriol 182, 6694–6697.[CrossRef]
    [Google Scholar]
  37. Morita, Y., Komori, Y., Mima, T., Kuroda, T., Mizushima, T. & Tsuchiya, T. ( 2001; ). Construction of a series of mutants lacking all of the four major mex operons for multidrug efflux pumps or possessing each one of the operons from Pseudomonas aeruginosa PAO1: MexCD-OprJ is an inducible pump. FEMS Microbiol Lett 202, 139–143.[CrossRef]
    [Google Scholar]
  38. Murakami, S., Nakashima, R., Yamashita, E. & Yamaguchi, A. ( 2002; ). Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419, 587–593.[CrossRef]
    [Google Scholar]
  39. Nagakubo, S., Nishino, K., Hirata, T. & Yamaguchi, A. ( 2002; ). The putative response regulator BaeR stimulates multidrug resistance of Escherichia coli via a novel multidrug exporter system, MdtABC. J Bacteriol 184, 4161–4167.[CrossRef]
    [Google Scholar]
  40. Nishino, K. & Yamaguchi, A. ( 2001; ). Analysis of a complete library of putative drug transporter genes in Escherichia coli. J Bacteriol 183, 5803–5812.[CrossRef]
    [Google Scholar]
  41. Nishino, K., Yamada, J., Hirakawa, H., Hirata, T. & Yamaguchi, A. ( 2003; ). Roles of TolC-dependent multidrug transporters of Escherichia coli in resistance to β-lactams. Antimicrob Agents Chemother 47, 3030–3033.[CrossRef]
    [Google Scholar]
  42. Obata, H., Kai, A. & Morozumi, S. ( 2001; ). The trends of Vibrio parahaemolyticus foodborne outbreaks in Tokyo: 1989–2000. Kansenshogaku Zasshi 75, 485–489.[CrossRef]
    [Google Scholar]
  43. Ocaktan, A., Yoneyama, H. & Nakae, T. ( 1997; ). Use of fluorescence probes to monitor function of the subunit proteins of the MexA-MexB-OprM drug extrusion machinery in Pseudomonas aeruginosa. J Biol Chem 272, 21964–21969.[CrossRef]
    [Google Scholar]
  44. Okusu, H., Ma, D. & Nikaido, H. ( 1996; ). AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. J Bacteriol 178, 306–308.
    [Google Scholar]
  45. Piddock, L. J. ( 2006; ). Multidrug-resistance efflux pumps – not just for resistance. Nat Rev Microbiol 4, 629–636.[CrossRef]
    [Google Scholar]
  46. Poole, K., Krebes, K., McNally, C. & Neshat, S. ( 1993; ). Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J Bacteriol 175, 7363–7372.
    [Google Scholar]
  47. Provenzano, D., Schuhmacher, D. A., Barker, J. L. & Klose, K. E. ( 2000; ). The virulence regulatory protein ToxR mediates enhanced bile resistance in Vibrio cholerae and other pathogenic Vibrio species. Infect Immun 68, 1491–1497.[CrossRef]
    [Google Scholar]
  48. Putman, M., van Veen, H. W. & Konings, W. N. ( 2000; ). Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev 64, 672–693.[CrossRef]
    [Google Scholar]
  49. Ruby, E. G., Urbanowski, M., Campbell, J., Dunn, A., Faini, M., Gunsalus, R., Lostroh, P., Lupp, C., McCann, J. & other authors ( 2005; ). Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. Proc Natl Acad Sci U S A 102, 3004–3009.[CrossRef]
    [Google Scholar]
  50. Sekiya, H., Mima, T., Morita, Y., Kuroda, T., Mizushima, T. & Tsuchiya, T. ( 2003; ). Functional cloning and characterization of a multidrug efflux pump, mexHI-opmD, from a Pseudomonas aeruginosa mutant. Antimicrob Agents Chemother 47, 2990–2992.[CrossRef]
    [Google Scholar]
  51. Sen, B., Dutta, B., Chatterjee, S., Bhattacharya, M. K., Nandy, R. K., Mukhopadhyay, A. K., Gangopadhyay, D. N., Bhattacharya, S. K. & Ramamurthy, T. ( 2007; ). The first outbreak of acute diarrhea due to a pandemic strain of Vibrio parahaemolyticus O3 : K6 in Kolkata, India. Int J Infect Dis 11, 185–187.[CrossRef]
    [Google Scholar]
  52. Srikumar, R., Kon, T., Gotoh, N. & Poole, K. ( 1998; ). Expression of Pseudomonas aeruginosa multidrug efflux pumps MexA-MexB-OprM and MexC-MexD-OprJ in a multidrug-sensitive Escherichia coli strain. Antimicrob Agents Chemother 42, 65–71.
    [Google Scholar]
  53. Su, H. P., Chiu, S. I., Tsai, J. L., Lee, C. L. & Pan, T. M. ( 2005a; ). Bacterial food-borne illness outbreaks in northern Taiwan, 1995–2001. J Infect Chemother 11, 146–151.[CrossRef]
    [Google Scholar]
  54. Su, X. Z., Chen, J., Mizushima, T., Kuroda, T. & Tsuchiya, T. ( 2005b; ). AbeM, an H+-coupled Acinetobacter baumannii multidrug efflux pump belonging to the MATE family of transporters. Antimicrob Agents Chemother 49, 4362–4364.[CrossRef]
    [Google Scholar]
  55. Tamura, N., Murakami, S., Oyama, Y., Ishiguro, M. & Yamaguchi, A. ( 2005; ). Direct interaction of multidrug efflux transporter AcrB and outer membrane channel TolC detected via site-directed disulfide cross-linking. Biochemistry 44, 11115–11121.[CrossRef]
    [Google Scholar]
  56. Thanassi, D. G., Cheng, L. W. & Nikaido, H. ( 1997; ). Active efflux of bile salts by Escherichia coli. J Bacteriol 179, 2512–2518.
    [Google Scholar]
  57. Tseng, T. T., Gratwick, K. S., Kollman, J., Park, D., Nies, D. H., Goffeau, A. & Saier, M. H., Jr ( 1999; ). The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J Mol Microbiol Biotechnol 1, 107–125.
    [Google Scholar]
  58. WHO ( 1999; ). Vibrio parahaemolyticus, Japan, 1996–1998. Wkly Epidemiol Rec 74, 361–363.
    [Google Scholar]
  59. Xu, X. J., Su, X. Z., Morita, Y., Kuroda, T., Mizushima, T. & Tsuchiya, T. ( 2003; ). Molecular cloning and characterization of the HmrM multidrug efflux pump from Haemophilus influenzae Rd. Microbiol Immunol 47, 937–943.[CrossRef]
    [Google Scholar]
  60. Yamamoto, T. & Yokota, T. ( 1989; ). Adherence targets of Vibrio parahaemolyticus in human small intestines. Infect Immun 57, 2410–2419.
    [Google Scholar]
  61. Yamazaki, M., Inuzuka, K., Matsumoto, M., Miwa, Y., Hiramatsu, R., Matsui, H., Sakae, K., Suzuki, Y. & Miyazaki, Y. ( 2003; ). Epidemiological study of outbreaks and sporadic cases due to Vibrio parahaemolyticus – serotype O3 : K6 in Aichi Prefecture, Japan, during 1988 and 2001. Kansenshogaku Zasshi 77, 1015–1023.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/009597-0
Loading
/content/journal/micro/10.1099/mic.0.2007/009597-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error