1887

Abstract

FimB and FimE are site-specific recombinases, part of the integrase family, and invert a 314 bp DNA switch that controls the expression of type 1 fimbriae in . FimB and FimE differ in their activity towards the switch, with FimB catalysing inversion in both directions in comparison to the higher-frequency but unidirectional on-to-off recombination catalysed by FimE. Previous work has demonstrated that FimB, but not FimE, recombination is completely inhibited and by a regulator, PapB, expressed from a distinct fimbrial locus. The aim of this work was to investigate differences between FimB and FimE activity by exploiting the differential inhibition demonstrated by PapB. The research focused on genetic changes to the switch that alter recombinase binding and its structural context. FimB and FimE still recombined a switch in which the majority of DNA was replaced with a larger region of non- DNA. This demonstrated a minimal requirement for FimB and FimE recombination of the Fim binding sites and associated inverted repeats. With the original leucine-responsive regulatory protein (Lrp) and integration host factor (IHF)-dependent structure removed, PapB was now able to inhibit both recombinases. The relative affinities of FimB and FimE were determined for the four ‘half sites’. This analysis, along with the effect of extensive swaps and duplications of the half sites on recombination frequency, demonstrated that FimB recruitment and therefore subsequent activity was dependent on a single half site and its context, whereas FimE recombination was less stringent, being able to interact initially with two half sites with equally high affinity. While increasing FimB recombination frequencies failed to overcome PapB repression, mutations made in recombinase binding sites resulted in inhibition of FimE recombination by PapB. Overall, the data support a model in which the recombinases differ in loading order and co-operative interactions. PapB exploits this difference and FimE becomes susceptible when its normal loading is restricted or changed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/010363-0
2007-12-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/12/4138.html?itemId=/content/journal/micro/10.1099/mic.0.2007/010363-0&mimeType=html&fmt=ahah

References

  1. Abraham, J. M., Freitag, C. S., Clements, J. R. & Eisenstein, B. I. ( 1985; ). An invertible element of DNA controls phase variation of type 1 fimbriae of Escherichia coli. Proc Natl Acad Sci U S A 82, 5724–5727.[CrossRef]
    [Google Scholar]
  2. Adlerberth, I., Hanson, L. A., Svanborg, C., Svennerholm, A. M., Nordgren, S. & Wold, A. E. ( 1995; ). Adhesins of Escherichia coli associated with extra-intestinal pathogenicity confer binding to colonic epithelial cells. Microb Pathog 18, 373–385.[CrossRef]
    [Google Scholar]
  3. Blakely, G., May, G., McCulloch, R., Arciszewska, L. K., Burke, M., Lovett, S. T. & Sherratt, D. J. ( 1993; ). Two related recombinases are required for site-specific recombination at dif and cer in E. coli K12. Cell 75, 351–361.[CrossRef]
    [Google Scholar]
  4. Blomfield, I. C., McClain, M. S. & Eisenstein, B. I. ( 1991a; ). Type 1 fimbriae mutants of Escherichia coli K12 – characterization of recognized afimbriate strains and construction of new fim deletion mutants. Mol Microbiol 5, 1439–1445.[CrossRef]
    [Google Scholar]
  5. Blomfield, I. C., McClain, M. S., Princ, J. A., Calie, P. J. & Eisenstein, B. I. ( 1991b; ). Type 1 fimbriation and fimE mutants of Escherichia coli K-12. J Bacteriol 173, 5298–5307.
    [Google Scholar]
  6. Blomfield, I. C., Vaughn, V., Rest, R. F. & Eisenstein, B. I. ( 1991c; ). Allelic exchange in Escherichia coli using the Bacillus subtilis sacB gene and a temperature-sensitive pSC101 replicon. Mol Microbiol 5, 1447–1457.[CrossRef]
    [Google Scholar]
  7. Blomfield, I. C., Calie, P. J., Eberhardt, K. J., McClain, M. S. & Eisenstein, B. I. ( 1993; ). Lrp stimulates phase variation of type 1 fimbriation in Escherichia coli K-12. J Bacteriol 175, 27–36.
    [Google Scholar]
  8. Blomfield, I. C., Kulasekara, D. H. & Eisenstein, B. I. ( 1997; ). Integration host factor stimulates both FimB- and FimE-mediated site-specific DNA inversion that controls phase variation of type 1 fimbriae expression in Escherichia coli. Mol Microbiol 23, 705–717.[CrossRef]
    [Google Scholar]
  9. Blyn, L. B., Braaten, B. A., White-Ziegler, C. A., Rolfson, D. H. & Low, D. A. ( 1989; ). Phase-variation of pyelonephritis-associated pili in Escherichia coli: evidence for transcriptional regulation. EMBO J 8, 613–620.
    [Google Scholar]
  10. Chen, Y. & Rice, P. A. ( 2003; ). New insight into site-specific recombination from Flp recombinase-DNA structures. Annu Rev Biophys Biomol Struct 32, 135–159.[CrossRef]
    [Google Scholar]
  11. Colloms, S. D., Bath, J. & Sherratt, D. J. ( 1997; ). Topological selectivity in Xer site-specific recombination. Cell 88, 855–864.[CrossRef]
    [Google Scholar]
  12. Connell, I., Agace, W., Klemm, P., Schembri, M., Marild, S. & Svanborg, C. ( 1996; ). Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc Natl Acad Sci U S A 93, 9827–9832.[CrossRef]
    [Google Scholar]
  13. Donaldson, S. G., Azizi, S. Q. & Dal Nogare, A. R. ( 1991; ). Characteristics of aerobic Gram-negative bacteria colonizing critically ill patients. Am Rev Respir Dis 144, 202–207.[CrossRef]
    [Google Scholar]
  14. Dove, S. L. & Dorman, C. J. ( 1996; ). Multicopy fimB gene expression in Escherichia coli: binding to inverted repeats in vivo, effect on fimA gene transcription and DNA inversion. Mol Microbiol 21, 1161–1173.[CrossRef]
    [Google Scholar]
  15. Eisenstein, B. I., Sweet, D. S., Vaughn, V. & Friedman, D. I. ( 1987; ). Integration host factor is required for the DNA inversion that controls phase variation in Escherichia coli. Proc Natl Acad Sci U S A 84, 6506–6510.[CrossRef]
    [Google Scholar]
  16. Forsman, K., Goransson, M. & Uhlin, B. E. ( 1989; ). Autoregulation and multiple DNA interactions by a transcriptional regulatory protein in E. coli pili biogenesis. EMBO J 8, 1271–1277.
    [Google Scholar]
  17. Gally, D. L., Bogan, J. A., Eisenstein, B. I. & Blomfield, I. C. ( 1993; ). Environmental-regulation of the fim switch controlling type 1 fimbrial phase variation in Escherichia coli K-12 – effects of temperature and media. J Bacteriol 175, 6186–6193.
    [Google Scholar]
  18. Gally, D. L., Rucker, T. J. & Blomfield, I. C. ( 1994; ). The leucine-responsive regulatory protein binds to the fim switch to control phase variation of type 1 fimbrial expression in Escherichia coli K12. J Bacteriol 176, 5665–5672.
    [Google Scholar]
  19. Gally, D. L., Leathart, J. & Blomfield, I. C. ( 1996; ). Interaction of FimB and FimE with the fim switch that controls the phase variation of type 1 fimbriae in Escherichia coli K12. Mol Microbiol 21, 725–738.[CrossRef]
    [Google Scholar]
  20. Guerina, N. G., Kessler, T. W., Guerina, V. J., Neutra, M. R., Clegg, H. W., Langermann, S., Scannapieco, F. A. & Goldmann, D. A. ( 1983; ). The role of pili and capsule in the pathogenesis of neonatal infection with Escherichia coli K1. J Infect Dis 148, 395–405.[CrossRef]
    [Google Scholar]
  21. Guzman, L. M., Belin, D., Carson, M. J. & Beckwith, J. ( 1995; ). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177, 4121–4130.
    [Google Scholar]
  22. Hallet, B. & Sherratt, D. J. ( 1997; ). Transposition and site-specific recombination: adapting DNA cut-and-paste mechanisms to a variety of genetic rearrangements. FEMS Microbiol Rev 21, 157–178.[CrossRef]
    [Google Scholar]
  23. Hinde, P., Deighan, P. & Dorman, C. J. ( 2005; ). Characterization of the detachable Rho-dependent transcription terminator of the fimE gene in Escherichia coli K-12. J Bacteriol 187, 8256–8266.[CrossRef]
    [Google Scholar]
  24. Holden, N. J., Uhlin, B. E. & Gally, D. L. ( 2001; ). PapB paralogues and their effect on the phase variation of type 1 fimbriae in Escherichia coli. Mol Microbiol 42, 319–330.[CrossRef]
    [Google Scholar]
  25. Holden, N. J., Totsika, M., Mahler, E., Roe, A. J., Catherwood, K., Lindner, K., Dobrindt, U. & Gally, D. L. ( 2006; ). Demonstration of regulatory cross-talk between P fimbriae and type 1 fimbriae in uropathogenic Escherichia coli. Microbiology 152, 1143–1153.[CrossRef]
    [Google Scholar]
  26. Iwahi, T., Abe, Y., Nakao, M., Imada, A. & Tsuchiya, K. ( 1983; ). Role of type 1 fimbriae in the pathogenesis of ascending urinary tract infection induced by Escherichia coli in mice. Infect Immun 39, 1307–1315.
    [Google Scholar]
  27. Kelly, A., Conway, C., Ó Cróinín, T., Smith, S. G. & Dorman, C. J. ( 2006; ). DNA supercoiling and the Lrp protein determine the directionality of fim switch DNA inversion in Escherichia coli K-12. J Bacteriol 188, 5356–5363.[CrossRef]
    [Google Scholar]
  28. Kim, S. & Landy, A. ( 1992; ). Lambda Int protein bridges between higher order complexes at two distant chromosomal loci attL and attR. Science 256, 198–203.[CrossRef]
    [Google Scholar]
  29. Klemm, P. ( 1986; ). Two regulatory fim genes, fimB and fimE, control the phase variation of type 1 fimbriae in Escherichia coli. EMBO J 5, 1389–1393.
    [Google Scholar]
  30. Klemm, P., Jorgensen, B. J., van Die, I., de Ree, H. & Bergmans, H. ( 1985; ). The fim genes responsible for synthesis of type 1 fimbriae in Escherichia coli, cloning and genetic organization. Mol Gen Genet 199, 410–414.[CrossRef]
    [Google Scholar]
  31. Krogfelt, K. A., Bergmans, H. & Klemm, P. ( 1990; ). Direct evidence that the FimH protein is the mannose-specific adhesin of Escherichia coli type 1 fimbriae. Infect Immun 58, 1995–1998.
    [Google Scholar]
  32. Kulasekara, H. D. & Blomfield, I. C. ( 1999; ). The molecular basis for the specificity of fimE in the phase variation of type 1 fimbriae of Escherichia coli K-12. Mol Microbiol 31, 1171–1181.[CrossRef]
    [Google Scholar]
  33. McClain, M. S., Blomfield, I. C. & Eisenstein, B. I. ( 1991; ). Roles of fimB and fimE in site-specific DNA inversion associated with phase variation of type 1 fimbriae in Escherichia coli. J Bacteriol 173, 5308–5314.
    [Google Scholar]
  34. Mizunoe, Y., Matsumoto, T., Sakumoto, M., Kubo, S., Mochida, O., Sakamoto, Y. & Kumazawa, J. ( 1997; ). Renal scarring by mannose-sensitive adhesin of Escherichia coli type 1 pili. Nephron 77, 412–416.[CrossRef]
    [Google Scholar]
  35. Mumm, J. P., Landy, A. & Gelles, J. ( 2006; ). Viewing single λ site-specific recombination events from start to finish. EMBO J 25, 4586–4595.[CrossRef]
    [Google Scholar]
  36. Neidhardt, F. C., Bloch, P. L. & Smith, D. F. ( 1974; ). Culture medium for enterobacteria. J Bacteriol 119, 736–747.
    [Google Scholar]
  37. Roesch, P. L. & Blomfield, I. C. ( 1998; ). Leucine alters the interaction of the leucine-responsive regulatory protein (Lrp) with the fim switch to stimulate site-specific recombination in Escherichia coli. Mol Microbiol 27, 751–761.[CrossRef]
    [Google Scholar]
  38. Rose, R. E. ( 1988; ). The nucleotide sequence of pACYC184. Nucleic Acids Res 16, 355 [CrossRef]
    [Google Scholar]
  39. Sadowski, P. ( 1986; ). Site-specific recombinases: changing partners and doing the twist. J Bacteriol 165, 341–347.
    [Google Scholar]
  40. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  41. Schaeffer, A. J., Schwan, W. R., Hultgren, S. J. & Duncan, J. L. ( 1987; ). Relationship of type 1 pilus expression in Escherichia coli to ascending urinary tract infections in mice. Infect Immun 55, 373–380.
    [Google Scholar]
  42. Sherratt, D. J., Arciszewska, L. K., Blakely, G., Colloms, S., Grant, K., Leslie, N. & McCulloch, R. ( 1995; ). Site-specific recombination and circular chromosome segregation. Philos Trans R Soc Lond B Biol Sci 347, 37–42.[CrossRef]
    [Google Scholar]
  43. Sohanpal, B. K., Kulasekara, H. D., Bonnen, A. & Blomfield, I. C. ( 2001; ). Orientational control of fimE expression in Escherichia coli. Mol Microbiol 42, 483–494.[CrossRef]
    [Google Scholar]
  44. Stadtman, E. R. & Levine, R. L. ( 2003; ). Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25, 207–218.[CrossRef]
    [Google Scholar]
  45. Studier, F. W., Rosenberg, A. H., Dunn, J. J. & Dubendorff, J. W. ( 1990; ). Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185, 60–89.
    [Google Scholar]
  46. Xia, Y., Forsman, K., Jass, J. & Uhlin, B. E. ( 1998; ). Oligomeric interaction of the PapB transcriptional regulator with the upstream activating region of pili adhesin gene promoters in Escherichia coli. Mol Microbiol 30, 513–523.[CrossRef]
    [Google Scholar]
  47. Xia, Y., Gally, D., Forsman-Semb, K. & Uhlin, B. E. ( 2000; ). Regulatory cross-talk between adhesin operons in Escherichia coli: inhibition of type 1 fimbriae expression by the PapB protein. EMBO J 19, 1450–1457.[CrossRef]
    [Google Scholar]
  48. Yanisch-Perron, C., Vieira, J. & Messing, J. ( 1985; ). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103–119.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/010363-0
Loading
/content/journal/micro/10.1099/mic.0.2007/010363-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error