1887

Abstract

, a gene that encodes a cell-associated dextransucrase produced by IBT-PQ, was isolated, sequenced and expressed in . From sequence analysis, seven repeat units in the N-terminal region were found, as well as five cell wall binding repeats in the C-terminal region. A model of the C-terminal domain of dextransucrase was built based on the solenoid structure of the cell wall binding domain already described in LytA. By experiments involving direct interactions of the enzyme with cells, as well as among the cells and the single C-terminal domain expressed in evidence was obtained concerning the anchoring function of this region in cell-associated dextransucrase, a function which may be independent of its capacity to bind dextran.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/008854-0
2007-12-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/12/3994.html?itemId=/content/journal/micro/10.1099/mic.0.2007/008854-0&mimeType=html&fmt=ahah

References

  1. Bozonnet, S., Dols-Laffargue, M., Fabre, E., Pizzut, S., Remaud-Simeon, M., Monsan, P. & Willemont, R. ( 2002; ). Molecular characterization of DSR-E, an α-1,2 linkage-synthesizing dextransucrase with two catalytic domains. J Bacteriol 184, 5753–5761.[CrossRef]
    [Google Scholar]
  2. Chellapandian, M., Larios, C., Sanchez-Gonzalez, M. & Lopez-Munguia, A. ( 1998; ). Production and properties of a dextransucrase from Leuconostoc mesenteroides IBT-PQ isolated from “pulque”, a traditional Aztec alcoholic beverage. J Ind Microbiol Biotechnol 21, 51–56.[CrossRef]
    [Google Scholar]
  3. Coligan, J. E., Duna, B. M., Speicher, D. W. & Wingfield, P. T. ( 2007; ). Current Protocols in Protein Science. Bognor Regis, UK: John Wiley and Sons.
  4. Combet, C., Jambon, M., Deleage, G. & Geourjon, C. ( 2002; ). Geno3D: automatic comparative molecular modelling of protein. Bioinformatics 18, 213–214.[CrossRef]
    [Google Scholar]
  5. Fernández-Tornero, C., López, R., García, E., Giménez-Gallego, G. & Romero, A. ( 2001; ). A novel solenoid fold in the cell wall anchoring domain of the pneumococcal virulence factor LytA. Nat Struct Biol 8, 1020–1024.[CrossRef]
    [Google Scholar]
  6. Fernández-Tornero, C., García, E., López, R., Giménez-Gallego, G. & Romero, A. ( 2002; ). Two new crystal forms of the choline-binding domain of the major pneumococcal autolysin: insights into the dynamics of the active homodimer. J Mol Biol 321, 163–173.[CrossRef]
    [Google Scholar]
  7. Figures, W. R. & Edwards, J. R. ( 1979; ). Resolution of the glycosyltransferase activities from two strains of Streptococcus mutans by polyacrylamide gel electrophoresis in the presence of Tween 80. Biochim Biophys Acta 577, 142–146.[CrossRef]
    [Google Scholar]
  8. Funane, K., Ookura, T. & Kobayashi, M. ( 1998; ). Glucan binding regions of dextransucrase from Leuconostoc mesenteroides NRRL B-512F. Biosci Biotechnol Biochem 62, 123–127.[CrossRef]
    [Google Scholar]
  9. Funane, K., Mizuno, K., Takahara, H. & Kobayashi, M. ( 2000; ). Gene encoding a dextransucrase-like protein in Leuconostoc mesenteroides NRRL B-512F. Biosci Biotechnol Biochem 64, 29–38.[CrossRef]
    [Google Scholar]
  10. Giffard, P. M. & Jacques, N. A. ( 1994; ). Definition of a fundamental repeating unit in streptococcal glucosyltransferase glucan-binding regions and related sequences. J Dent Res 73, 1133–1141.
    [Google Scholar]
  11. Greco, A., Ho, J. G., Lin, S. J., Palcic, M. M., Rupnik, M. & Ng, K. K. ( 2006; ). Carbohydrate recognition by Clostridium difficile toxin A. Nat Struct Mol Biol 13, 460–461.[CrossRef]
    [Google Scholar]
  12. Guex, N. & Peitsch, M. C. ( 1997; ). SWISS-MODEL and the Swiss PdbViewer: an environment for comparative protein modelling. Electrophoresis 18, 2714–2723.[CrossRef]
    [Google Scholar]
  13. Hamada, S. & Slade, H. D. ( 1980; ). Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev 44, 331–384.
    [Google Scholar]
  14. Ho, J. G. S., Greco, A., Rupnik, M. & Ng, K. K.-S. ( 2005; ). Crystal structure of receptor-binding repeats from Clostridium difficile toxin. Proc Natl Acad Sci U S A 102, 18373–18378.[CrossRef]
    [Google Scholar]
  15. Janecek, S., Svensson, B. & Russell, R. ( 2000; ). Location of repeat elements in glucansucrases of Leuconostoc and Streptococcus species. FEMS Microbiol Lett 192, 53–57.[CrossRef]
    [Google Scholar]
  16. Kato, C. & Kuramitsu, H. K. ( 1991; ). Molecular basis for the association of glucosyltransferases with the cell surface of oral streptococci. FEMS Microbiol Lett 63, 153–157.
    [Google Scholar]
  17. Kralj, S., van Geel-Schutten, G. H., Rahaoui, H., Leer, R. J., Faber, E. J., van der Maarel, M. J. & Dijkhuizen, L. ( 2002; ). Molecular characterization of a novel glucosyltransferase from Lactobacillus reuteri strain 121 synthesizing a unique, highly branched glucan with α-(1→4) and α-(1→6) glucosidic bonds. Appl Environ Microbiol 68, 4283–4291.[CrossRef]
    [Google Scholar]
  18. Kralj, S., van Geel-Schutten, G. H., van der Maarel, M. J. & Dijkhuizen, L. ( 2004a; ). Biochemical and molecular characterization of Lactobacillus reuteri 121 reuteransucrase. Microbiology 150, 2099–2112.[CrossRef]
    [Google Scholar]
  19. Kralj, S., Van Geel-Schutten, G. H., Dondorff, M. M. G., Kirsanovs, S., Van Der Maarel, M. J. E. C. & Dijkhuizen, L. ( 2004b; ). Glucan synthesis in the genus Lactobacillus: isolation and characterization of glucansucrase genes, enzymes and glucan products from six different strains. Microbiology 150, 3681–3690.[CrossRef]
    [Google Scholar]
  20. MacGregor, E. A., Jesperen, H. M. & Svensson, B. ( 1996; ). A circularly permuted α-amylase-type α/β-barrel structure in glucan-synthesizing glucosyltransferases. FEBS Lett 378, 263–266.[CrossRef]
    [Google Scholar]
  21. Matsuura, Y., Kusunoki, M., Harada, W. & Kakudo, M. ( 1984; ). Structure and possible catalytic residues of Taka-amylase A. J Biochem (Tokyo) 95, 697–702.
    [Google Scholar]
  22. Miller, A. W., Eklund, S. H. & Robyt, J. F. ( 1986; ). Milligram to gram scale purification and characterization of dextransucrase from Leuconostoc mesenteroides NRRL B-512F. Carbohydr Res 147, 119–133.[CrossRef]
    [Google Scholar]
  23. Monchois, V., Remaud-Simeon, M., Russell, R., Monsan, P. & Willemont, R. ( 1997; ). Characterization of Leuconostoc mesenteroides NRRL B-512F dextransucrase (DSR-S) and identification of amino-acid residues playing a key role in enzyme activity. Appl Microbiol Biotechnol 48, 465–472.[CrossRef]
    [Google Scholar]
  24. Monchois, V., Lakey, J. H. & Russell, R. R. ( 1999a; ). Secondary structure of Streptococcus downei GTF-1 glucansucrase. FEMS Microbiol Lett 177, 243–248.[CrossRef]
    [Google Scholar]
  25. Monchois, V., Willemont, R. & Monsan, P. ( 1999b; ). Glucansucrases: mechanism of action and structure–function relationships. FEMS Microbiol Rev 23, 131–151.
    [Google Scholar]
  26. Monsan, P. & Paul, F. ( 1995; ). Enzymatic synthesis of oligosaccharides. FEMS Microbiol Rev 16, 187–192.[CrossRef]
    [Google Scholar]
  27. Monsan, P., Bozonnet, S., Albenne, C., Joucla, G., Willemont, R.-M. & Remaud-Simeon, M. ( 2001; ). Homopolysaccharides from lactic acid bacteria. Int Dairy J 11, 675–685.[CrossRef]
    [Google Scholar]
  28. Moulis, C., Joucla, G., Harrison, D., Fabre, E., Potocki-Veronese, G., Monsan, P. & Remaud-Simeon, M. ( 2006a; ). Understanding the polymerization mechanism of glycoside-hydrolase family 70 glucansucrases. J Biol Chem 281, 31254–31267.[CrossRef]
    [Google Scholar]
  29. Moulis, C., Arcache, A., Escalier, P. C., Rinaudo, M., Monsan, P., Remaud-Simeon, M. & Potocki-Veronese, G. ( 2006b; ). High-level production and purification of a fully active recombinant dextransucrase from Leuconostoc mesenteroides NRRL B-512F. FEMS Microbiol Lett 261, 203–210.[CrossRef]
    [Google Scholar]
  30. Olivares-Illana, V., López-Munguía, A. & Olvera, C. ( 2003; ). Molecular characterization of inulosucrase from Leuconostoc citreum: a fructosyltransferase within a glucosyltransferase. J Bacteriol 185, 3606–3612.[CrossRef]
    [Google Scholar]
  31. Olvera, C., Centeno-Leija, S. & Lopez-Munguia, A. ( 2007; ). Structural and functional features of fructansucrases present in Leuconostoc mesenteroides ATCC 8293. Antonie Van Leeuwenhoek 92, 11–20.[CrossRef]
    [Google Scholar]
  32. Peitsch, M. C. ( 1995; ). Protein modeling by E-mail. Biol/Technology 13, 658–660.[CrossRef]
    [Google Scholar]
  33. Russell, R. R. ( 1990; ). Molecular genetics of glucan metabolism in oral streptococci. Arch Oral Biol 35, 53S–58S.[CrossRef]
    [Google Scholar]
  34. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  35. Schwede, T., Kopp, J., Guex, N. & Peitsch, M. C. ( 2003; ). SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31, 3381–3385.[CrossRef]
    [Google Scholar]
  36. Shah, D. S., Joucla, G., Remaud-Simeon, M. & Russell, R. R. ( 2004; ). Conserved repeat motifs and glucan binding by glucansucrases of oral streptococci and Leuconostoc mesenteroides. J Bacteriol 186, 8301–8308.[CrossRef]
    [Google Scholar]
  37. Tieking, M., Ehrmann, M. A., Vogel, R. F. & Ganzle, M. G. ( 2005; ). Molecular and functional characterization of a levansucrase from the sourdough isolate Lactobacillus sanfranciscensis TMW 1.392. Appl Microbiol Biotechnol 66, 655–663.[CrossRef]
    [Google Scholar]
  38. Tsai, Y. W., Chia, J. S., Shiau, Y. Y., Chou, H. C., Liaw, Y. C. & Lou, K. L. ( 2000; ). Three-dimensional modelling of the catalytic domain of Streptococcus mutans glucosyltransferase GtfB. FEMS Microbiol Lett 188, 75–79.[CrossRef]
    [Google Scholar]
  39. van Hijum, S. A. F. T., Kralj, S., Ozimek, L. K., Dijkhuizen, L. & van Geel-Schutten, I. G. H. ( 2006; ). Structure–function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiol Mol Biol Rev 70, 157–176.[CrossRef]
    [Google Scholar]
  40. Vickerman, M. M., Minick, P. E. & Mather, N. M. ( 2001; ). Characterization of the Streptococcus gordonii chromosomal region immediately downstream of the glucosyltransferase gene. Microbiology 147, 3061–3070.
    [Google Scholar]
  41. von Eichel-Streiber, C., Saueborn, M. & Kuramitsu, H. K. ( 1992; ). Evidence for a modular structure of the homologous repetitive C-terminal carbohydrate-binding sites of Clostridium difficile toxins and Streptococcus mutans glucosyltransferases. J Bacteriol 174
    [Google Scholar]
  42. Zahnley, J. C. & Smith, M. R. ( 2000; ). Cellular association of glucosyltransferases in Leuconostoc mesenteroides and effects of detergent on cell association. Appl Biochem Biotechnol 87, 57–70.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/008854-0
Loading
/content/journal/micro/10.1099/mic.0.2007/008854-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error