1887

Abstract

Catabolism of odd-chain-length fatty acids yields acetyl-CoA and propionyl-CoA. A common pathway of propionyl-CoA metabolism in micro-organisms is the methylcitrate cycle, which includes the dedicated enzymes methylcitrate synthase (MCS), methylcitrate dehydratase (MCD) and methylisocitrate lyase (MCL). The methylcitrate cycle is essential for propionate metabolism in . Unusually, lacks an MCL orthologue and this activity is provided instead by two isoforms of the glyoxylate cycle enzyme isocitrate lyase (ICL1 and ICL2). These bifunctional (ICL/MCL) enzymes are jointly required for propionate metabolism and for growth and survival in mice. In contrast, the non-pathogenic species encodes a canonical MCL enzyme in addition to ICL1 and ICL2. The gene encoding MCL () is clustered with genes encoding MCS () and MCD (). Here we show that deletion of the locus reduced but did not eliminate MCL activity in cell-free extracts. The residual MCL activity was abolished by deletion of and in the Δ background, suggesting that these genes encode bifunctional ICL/MCL enzymes. A Δ Δ Δ mutant was unable to grow on propionate or mixtures of propionate and glucose. We hypothesize that incomplete propionyl-CoA metabolism might cause toxic metabolites to accumulate. Consistent with this idea, deletion of and in the Δ Δ Δ background paradoxically restored growth on propionate-containing media. These observations suggest that the marked attenuation of ICL1/ICL2-deficient in mice could be due to the accumulation of toxic propionyl-CoA metabolites, rather than inability to utilize fatty acids per se.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/011726-0
2007-12-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/12/3973.html?itemId=/content/journal/micro/10.1099/mic.0.2007/011726-0&mimeType=html&fmt=ahah

References

  1. Ashworth J. M., Kornberg H. L. 1964; The role of isocitrate lyase in Escherichia coli . Biochim Biophys Acta 89:383–384
    [Google Scholar]
  2. Boshoff H. I., Barry C. E. III 2005; Tuberculosis – metabolism and respiration in the absence of growth. Nat Rev Microbiol 3:70–80
    [Google Scholar]
  3. Bramer C. O., Steinbuchel A. 2001; The methylcitric acid pathway in Ralstonia eutropha : new genes identified involved in propionate metabolism. Microbiology 147:2203–2214
    [Google Scholar]
  4. Bramer C. O., Silva L. F., Gomez J. G., Priefert H., Steinbuchel A. 2002; Identification of the 2-methylcitrate pathway involved in the catabolism of propionate in the polyhydroxyalkanoate-producing strain Burkholderia sacchari IPT101(T) and analysis of a mutant accumulating a copolyester with higher 3-hydroxyvalerate content. Appl Environ Microbiol 68:271–279
    [Google Scholar]
  5. Brock M. 2005; Generation and phenotypic characterization of Aspergillus nidulans methylisocitrate lyase deletion mutants: methylisocitrate inhibits growth and conidiation. Appl Environ Microbiol 71:5465–5475
    [Google Scholar]
  6. Brock M., Buckel W. 2004; On the mechanism of action of the antifungal agent propionate. Eur J Biochem 271:3227–3241
    [Google Scholar]
  7. Brock M., Fischer R., Linder D., Buckel W. 2000; Methylcitrate synthase from Aspergillus nidulans : implications for propionate as an antifungal agent. Mol Microbiol 35:961–973
    [Google Scholar]
  8. Brock M., Darley D., Textor S., Buckel W. 2001; 2-Methylisocitrate lyases from the bacterium Escherichia coli and the filamentous fungus Aspergillus nidulans : characterization and comparison of both enzymes. Eur J Biochem 268:3577–3586
    [Google Scholar]
  9. Chauhan A., Ogram A. 2006; Fatty acid-oxidizing consortia along a nutrient gradient in the Florida Everglades. Appl Environ Microbiol 72:2400–2406
    [Google Scholar]
  10. Cheema-Dhadli S., Leznoff C. C., Halperin M. L. 1975; Effect of 2-methylcitrate on citrate metabolism: implications for the management of patients with propionic acidemia and methylmalonic aciduria. Pediatr Res 9:905–908
    [Google Scholar]
  11. Claes W. A., Puhler A., Kalinowski J. 2002; Identification of two prpDBC gene clusters in Corynebacterium glutamicum and their involvement in propionate degradation via the 2-methylcitrate cycle. J Bacteriol 184:2728–2739
    [Google Scholar]
  12. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S. other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544
    [Google Scholar]
  13. Cole S. T., Eiglmeier K., Parkhill J., James K. D., Thomson N. R., Wheeler P. R., Honoré N., Garnier T., Churcher C. other authors 2001; Massive gene decay in the leprosy bacillus. Nature 409:1007–1011
    [Google Scholar]
  14. Conrad R., Klose M. 1999; Anaerobic conversion of carbon dioxide to methane, acetate and propionate on washed rice roots. FEMS Microbiol Ecol 30:147–155
    [Google Scholar]
  15. Conrad R., Klose M. 2000; Selective inhibition of reactions involved in methanogenesis and fatty acid production on rice roots. FEMS Microbiol Ecol 34:27–34
    [Google Scholar]
  16. Fleischmann R. D., Alland D., Eisen J. A., Carpenter L., White O., Peterson J., DeBoy R., Dodson R., Gwinn M. other authors 2002; Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol 184:5479–5490
    [Google Scholar]
  17. Garnier T., Eiglmeier K., Camus J. C., Medina N., Mansoor H., Pryor M., Duthoy S., Grondin S., Lacroix C. other authors 2003; The complete genome sequence of Mycobacterium bovis . Proc Natl Acad Sci U S A 100:7877–7882
    [Google Scholar]
  18. Gould T. A., van de Langemheen H., Munoz-Elias E. J., McKinney J. D., Sacchettini J. C. 2006; Dual role of isocitrate lyase 1 in the glyoxylate and methylcitrate cycles in Mycobacterium tuberculosis . Mol Microbiol 61:940–947
    [Google Scholar]
  19. Grimek T. L., Holden H., Rayment I., Escalante-Semerena J. C. 2003; Residues C123 and D58 of the 2-methylisocitrate lyase (PrpB) enzyme of Salmonella enterica are essential for catalysis. J Bacteriol 185:4837–4843
    [Google Scholar]
  20. Grimm C., Evers A., Brock M., Maerker C., Klebe G., Buckel W., Reuter K. 2003; Crystal structure of 2-methylisocitrate lyase (PrpB) from Escherichia coli and modelling of its ligand bound active centre. J Mol Biol 328:609–621
    [Google Scholar]
  21. Horswill A. R., Escalante-Semerena J. C. 1999; Salmonella typhimurium LT2 catabolizes propionate via the 2-methylcitric acid cycle. J Bacteriol 181:5615–5623
    [Google Scholar]
  22. Horswill A. R., Dudding A. R., Escalante-Semerena J. C. 2001; Studies of propionate toxicity in Salmonella enterica identify 2-methylcitrate as a potent inhibitor of cell growth. J Biol Chem 276:19094–19101
    [Google Scholar]
  23. Jain M., Petzold C. J., Schelle M. W., Leavell M. D., Mougous J. D., Bertozzi C. R., Leary J. A., Cox J. S. 2007; Lipidomics reveals control of Mycobacterium tuberculosis virulence lipids via metabolic coupling. Proc Natl Acad Sci U S A 104:5133–5138
    [Google Scholar]
  24. Kalinowski J., Bathe B., Bartels D., Bischoff N., Bott M., Burkovski A., Dusch N., Eggeling L., Eikmanns B. J. other authors 2003; The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25
    [Google Scholar]
  25. Li L., Bannantine J. P., Zhang Q., Amonsin A., May B. J., Alt D., Banerji N., Kanjilal S., Kapur V. 2005; The complete genome sequence of Mycobacterium avium subspecies paratuberculosis . Proc Natl Acad Sci U S A 102:12344–12349
    [Google Scholar]
  26. Liu S., Lu Z., Han Y., Melamud E., Dunaway-Mariano D., Herzberg O. 2005; Crystal structures of 2-methylisocitrate lyase in complex with product and with isocitrate inhibitor provide insight into lyase substrate specificity, catalysis and evolution. Biochemistry 44:2949–2962
    [Google Scholar]
  27. Luttik M. A., Kotter P., Salomons F. A., van der Klei I. J., van Dijken J. P., Pronk J. T. 2000; The Saccharomyces cerevisiae ICL2 gene encodes a mitochondrial 2-methylisocitrate lyase involved in propionyl-coenzyme A metabolism. J Bacteriol 182:7007–7013
    [Google Scholar]
  28. Maerker C., Rohde M., Brakhage A. A., Brock M. 2005; Methylcitrate synthase from Aspergillus fumigatus . Propionyl-CoA affects polyketide synthesis, growth and morphology of conidia. FEBS J 272:3615–3630
    [Google Scholar]
  29. Maruyama K., Kitamura H. 1985; Mechanisms of growth inhibition by propionate and restoration of the growth by sodium bicarbonate or acetate in Rhodopseudomonas sphaeroides S. J Biochem (Tokyo) 98:819–824
    [Google Scholar]
  30. Mattow J., Siejak F., Hagens K., Becher D., Albrecht D., Krah A., Schmidt F., Jungblut P. R., Kaufmann S. H., Schaible U. E. 2006; Proteins unique to intraphagosomally grown Mycobacterium tuberculosis . Proteomics 6:2485–2494
    [Google Scholar]
  31. Munoz-Elias E. J., McKinney J. D. 2005; Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med 11:638–644
    [Google Scholar]
  32. Munoz-Elias E. J., McKinney J. D. 2006; Carbon metabolism of intracellular bacteria. Cell Microbiol 8:10–22
    [Google Scholar]
  33. Munoz-Elias E. J., Upton A. M., Cherian J., McKinney J. D. 2006; Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence. Mol Microbiol 60:1109–1122
    [Google Scholar]
  34. Schnappinger D., Ehrt S., Voskuil M. I., Liu Y., Mangan J. A., Monahan I. M., Dolganov G., Efron B., Butcher P. D. other authors 2003; Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198:693–704
    [Google Scholar]
  35. Snapper S. B., Melton R. E., Mustafa S., Kieser T., Jacobs W. R. Jr 1990; Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis . Mol Microbiol 4:1911–1919
    [Google Scholar]
  36. Stone B. J., Brier A., Kwaik Y. A. 1999; The Legionella pneumophila prp locus; required during infection of macrophages and amoebae. Microb Pathog 27:369–376
    [Google Scholar]
  37. Textor S., Wendisch V. F., De Graaf A. A., Muller U., Linder M. I., Linder D., Buckel W. 1997; Propionate oxidation in Escherichia coli : evidence for operation of a methylcitrate cycle in bacteria. Arch Microbiol 168:428–436
    [Google Scholar]
  38. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  39. Wang Z. X., Bramer C. O., Steinbuchel A. 2003; The glyoxylate bypass of Ralstonia eutropha . FEMS Microbiol Lett 228:63–71
    [Google Scholar]
  40. Wegener W. S., Vanderwinkel E., Reeves H. C., Ajl S. J. 1969; Propionate metabolism. V. The physiological significance of isocitrate lyase during growth of E. coli on propionate. Arch Biochem Biophys 129:545–553
    [Google Scholar]
  41. Wheeler P. R., Bulmer K., Ratledge C., Dale J. W., Norman E. 1992; Control of acyl-CoA carboxylase activity in mycobacteria. FEMS Microbiol Lett 69:169–172
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/011726-0
Loading
/content/journal/micro/10.1099/mic.0.2007/011726-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error