1887

Abstract

Microbes play key geoactive roles in the biosphere, particularly in the areas of element biotransformations and biogeochemical cycling, metal and mineral transformations, decomposition, bioweathering, and soil and sediment formation. All kinds of microbes, including prokaryotes and eukaryotes and their symbiotic associations with each other and ‘higher organisms’, can contribute actively to geological phenomena, and central to many such geomicrobial processes are transformations of metals and minerals. Microbes have a variety of properties that can effect changes in metal speciation, toxicity and mobility, as well as mineral formation or mineral dissolution or deterioration. Such mechanisms are important components of natural biogeochemical cycles for metals as well as associated elements in biomass, soil, rocks and minerals, e.g. sulfur and phosphorus, and metalloids, actinides and metal radionuclides. Apart from being important in natural biosphere processes, metal and mineral transformations can have beneficial or detrimental consequences in a human context. Bioremediation is the application of biological systems to the clean-up of organic and inorganic pollution, with bacteria and fungi being the most important organisms for reclamation, immobilization or detoxification of metallic and radionuclide pollutants. Some biominerals or metallic elements deposited by microbes have catalytic and other properties in nanoparticle, crystalline or colloidal forms, and these are relevant to the development of novel biomaterials for technological and antimicrobial purposes. On the negative side, metal and mineral transformations by microbes may result in spoilage and destruction of natural and synthetic materials, rock and mineral-based building materials (e.g. concrete), acid mine drainage and associated metal pollution, biocorrosion of metals, alloys and related substances, and adverse effects on radionuclide speciation, mobility and containment, all with immense social and economic consequences. The ubiquity and importance of microbes in biosphere processes make geomicrobiology one of the most important concepts within microbiology, and one requiring an interdisciplinary approach to define environmental and applied significance and underpin exploitation in biotechnology.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.037143-0
2010-03-01
2019-11-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/3/609.html?itemId=/content/journal/micro/10.1099/mic.0.037143-0&mimeType=html&fmt=ahah

References

  1. Adamo, P. & Violante, P. ( 2000; ).Weathering of rocks and neogenesis of minerals associated with lichen activity. Appl Clay Sci 16, 229–256.[CrossRef]
    [Google Scholar]
  2. Adamo, P., Vingiani, S. & Violante, P. ( 2002; ). Lichen–rock interactions and bioformation of minerals. Dev Soil Sci 28B, 377–391.
    [Google Scholar]
  3. Adeyemi, A. O. & Gadd, G. M. ( 2005; ). Fungal degradation of calcium-, lead- and silicon-bearing minerals. Biometals 18, 269–281.[CrossRef]
    [Google Scholar]
  4. Adriaensen, K., Vralstad, T., Noben, J. P., Vangronsveld, J. &Colpaert, J. V. ( 2005; ). Copper-adapted Suillusluteus, a symbiotic solution for pines colonizing Cu mine spoils. Appl Environ Microbiol 71, 7279–7284.[CrossRef]
    [Google Scholar]
  5. Adriano, D. C. ( 2001; ). Trace Elementsin the Terrestrial Environment: Biogeochemistry, Bioavailability and Risksof Metals, 2nd edn. New York: Springer.
  6. Adriano, D. C., Bolan, N. S., Vangronsveld, J. & Wenzel,W. W. ( 2004a; ). Heavy metals. In Encyclopedia ofSoils in the Environment, pp 175–182. Edited by D. Hillel. Amsterdam:Elsevier.
  7. Adriano, D. C., Wenzel, W. W., Vangronsveld, J. & Bolan,N. S. ( 2004b; ). Role of assisted natural remediationin environmental cleanup. Geoderma 122, 121–142.[CrossRef]
    [Google Scholar]
  8. Altermann, W., Böhmer, C., Gitter, F., Heimann, F., Heller,I., Läuchli, B. & Putz, C. ( 2009; ). Definingbiominerals and organominerals: direct and indirect indicators of life. [commenton Perry et al., Sedimentary Geology 201, 157–179]. Sedimentary Geol 213, 150–151.[CrossRef]
    [Google Scholar]
  9. Amores, D. R. & Warren, L. A. ( 2007; ). Identifying when microbes biosilicify: the interconnected requirementsof acidic pH, colloidal SiO2 and exposed microbial surface. Chem Geol 240, 298–312.[CrossRef]
    [Google Scholar]
  10. Amundson, R., Richter, D. D., Humphreys, G. S., Jobbagy, E.G. & Gaillardet, J. ( 2007; ). Coupling between biotaand Earth materials in the critical zone. Elements 3, 327–332.[CrossRef]
    [Google Scholar]
  11. Arnott, H. J. ( 1995; ). Calcium oxalatein fungi. In Calcium Oxalate in Biological Systems, pp. 73–111.Edited by S. R. Khan. Boca Raton, FL: CRC Press.
  12. Arocena, J. M., Glowa, K. R., Massicotte, H. B. & Lavkulich,L. ( 1999; ). Chemical and mineral composition of ectomycorrhizospheresoils of subalpine fir (Abies lasiocarpa (Hook.) Nutt.)in the AE horizon of a Luvisol. Can J Soil Sci 79, 25–35.[CrossRef]
    [Google Scholar]
  13. Arocena, J. M., Zhu, L. P. & Hall, K. ( 2003; ). Mineral accumulations induced by biological activity on graniticrocks in Qinghai Plateau, China. Earth Surf Process Landf 28, 1429–1437.[CrossRef]
    [Google Scholar]
  14. Aubert, C., Lojou, E., Bianco, P., Rousset, M., Durand, M.-C.,Bruschi, M. & Dolla, A. ( 1998; ). The Desulfuromonasacetoxidans triheme cytochrome c 7 produced in Desulfovibrio desulfuricans retains its metal reductase activity. Appl Environ Microbiol 64, 1308–1312.
    [Google Scholar]
  15. Avery, S. V. ( 2001; ). Metal toxicityin yeast and the role of oxidative stress. Adv Appl Microbiol 49, 111–142.
    [Google Scholar]
  16. Bae, W., Chen, W., Mulchandani, A. & Mehra, R. ( 2000; ). Enhanced bioaccumulation of heavy metals by bacterial cellsdisplaying synthetic phytochelatins. Biotechnol Bioeng 70, 518–523.[CrossRef]
    [Google Scholar]
  17. Bae, W., Mehra, R. K., Mulchandani, A. & Chen, W. ( 2001; ). Genetic engineering of Escherichia colifor enhanced uptake and bioaccumulation of mercury. Appl EnvironMicrobiol 67, 5335–5338.
    [Google Scholar]
  18. Bae, W., Mulchandani, A. & Chen, W. ( 2002; ). Cell surface display of synthetic phytochelatins using ice nucleationprotein for enhanced heavy metal bioaccumulation. J Inorg Biochem 88, 223–227.[CrossRef]
    [Google Scholar]
  19. Bae, W., Wu, C. H., Kostal, J., Mulchandani, A. & Chen,W. ( 2003; ). Enhanced mercury biosorption by bacterialcells with surface-displayed MerR. Appl Environ Microbiol 69, 3176–3180.[CrossRef]
    [Google Scholar]
  20. Baeuerlein, E. ( 2000; ). Biomineralization. Weinheim, Germany: Wiley-VCH.
  21. Baker, A. J. M. & Brooks, R. R. ( 1989; ). Terrestrial higher plants which accumulate metallic elements –a review of their distribution, ecology and phytochemistry. Biorecovery 1, 81–126.
    [Google Scholar]
  22. Baldrian, P. ( 2003; ). Interaction ofheavy metals with white-rot fungi. Enzyme Microb Technol 32, 78–91.[CrossRef]
    [Google Scholar]
  23. Balogh-Brunstad, Z., Keller, C. K., Gill, R. A., Bormann, B.T. & Li, C. Y. ( 2008; ). The effect of bacteriaand fungi on chemical weathering and chemical denudation fluxes in pine growthexperiments. Biogeochemistry 88, 153–167.[CrossRef]
    [Google Scholar]
  24. Banfield, J. F. & Nealson, K. H. (editors) ( 1997; ). Geomicrobiology: Interactions between Microbes and Minerals,Reviews in Mineralogy and Geochemistry, vol. 35. Washington, DC: MineralogicalSociety of America.
  25. Banfield, J. F., Barker, W. W., Welch, S. A. & Taunton,A. ( 1999; ). Biological impact on mineral dissolution:application of the lichen model to understanding mineral weathering in therhizosphere. Proc Natl Acad Sci U S A 96, 3404–3411.[CrossRef]
    [Google Scholar]
  26. Banfield, J. F., Cervini-Silva, J. & Nealson, K. H. (editors) ( 2005; ). Molecular Geomicrobiology, Reviews inMineralogy and Geochemistry, vol. 59. Washington, DC: Mineralogical Societyof America.
  27. Bargar, J. R., Bernier-Latmani, R., Giammar, D. E. & Tebo,B. M. ( 2008; ). Biogenic uraninite nanoparticles andtheir importance for uranium remediation. Elements 4, 407–412.[CrossRef]
    [Google Scholar]
  28. Barkay, T. & Schaefer, J. ( 2001; ).Metal and radionuclide bioremediation: issues, considerations and potentials. Curr Opin Microbiol 4, 318–323.[CrossRef]
    [Google Scholar]
  29. Barkay, T. & Wagner-Dobler, I. ( 2005; ). Microbial transformations of mercury: potentials, challenges, and achievementsin controlling mercury toxicity in the environment. Adv Appl Microbiol 57, 1–52.
    [Google Scholar]
  30. Barker, W. W. & Banfield, J. F. ( 1996; ). Biologically versus inorganically mediated weathering reactions: relationshipsbetween minerals and extracellular microbial polymers in lithobiotic communities. Chem Geol 132, 55–69.[CrossRef]
    [Google Scholar]
  31. Barker, W. W. & Banfield, J. F. ( 1998; ). Zones of chemical and physical interaction at interfaces between microbialcommunities and minerals: a model. Geomicrobiol J 15, 223–244.[CrossRef]
    [Google Scholar]
  32. Barnes, L. J., Janssen, F. J., Sherren, J., Versteegh, J. H.,Koch, R. O. & Scheeren, P. J. H. ( 1992; ). Simultaneousremoval of microbial sulphate and heavy metals from wastewater. Trans Inst Min Metall 101, 183–190.
    [Google Scholar]
  33. Bazylinski, D. A. ( 2001; ). Bacterialmineralization. In Encyclopedia of Materials: Science and Technology,pp. 441–448. Amsterdam: Elsevier.
  34. Bazylinski, D. A. & Moskowitz, B. M. ( 1997; ). Microbial biomineralization of magnetic iron minerals: microbiology,magnetism, and environmental significance. Rev Mineral 35, 181–223.
    [Google Scholar]
  35. Bazylinski, D. A. & Schubbe, S. ( 2007; ). Controlled biomineralization by and applications of magnetotactic bacteria. Adv Appl Microbiol 62, 21–62.
    [Google Scholar]
  36. Beech, I. B. & Sunner, J. ( 2004; ).Biocorrosion: towards understanding interactions between biofilms and metals. Curr Opin Biotechnol 15, 181–186.[CrossRef]
    [Google Scholar]
  37. Bennett, P. C., Siegel, D. I., Melcer, M. E. & Hassett,J. P. ( 1988; ). The dissolution of quartz in diluteaqueous solutions of organic acids at 25C. Geochim Cosmochim Acta 52, 1521–1530.[CrossRef]
    [Google Scholar]
  38. Bennett, P. C., Hiebert, F. K. & Choi, W. J. ( 1996; ). Microbial colonization and weathering of silicates in petroleum-contaminatedgroundwater. Chem Geol 132, 45–53.[CrossRef]
    [Google Scholar]
  39. Bennett, P. C., Rogers, J. A., Hiebert, F. K. & Choi, W.J. ( 2001; ). Silicates, silicate weathering, and microbialecology. Geomicrobiol J 18, 3–19.[CrossRef]
    [Google Scholar]
  40. Bentley, R. & Chasteen, T. G. ( 2002; ). Microbial methylation of metalloids: arsenic, antimony and bismuth. Microbiol Mol Biol Rev 66, 250–271.[CrossRef]
    [Google Scholar]
  41. Bergna, H. E. ( 1994; ). Colloid chemistryof silica – an overview. Colloid Chem Silica 234, 1–47.
    [Google Scholar]
  42. Beveridge, T. J. ( 1989; ). Role of cellulardesign in bacterial metal accumulation and mineralization. AnnuRev Microbiol 43, 147–171.
    [Google Scholar]
  43. Beveridge, T. J., Meloche, J. D., Fyfe, W. S. & Murray,R. G. E. ( 1983; ). Diagenesis of metals chemically complexedto bacteria: laboratory formation of metal phosphates, sulfides and organiccondensates in artificial sediments. Appl Environ Microbiol 45, 1094–1108.
    [Google Scholar]
  44. Blaudez, D., Jacob, C., Turnau, K., Colpaert, J. V., Ahonen-Jonnarth,U., Finlay, R., Botton, B. & Chalot, M. ( 2000; ).Differential responses of ectomycorrizal fungi to heavy metals in vitro. Mycol Res 104, 1366–1371.[CrossRef]
    [Google Scholar]
  45. Borda, M. J. & Sparks, D. L. ( 2008; ). Kinetics and mechanisms of sorption–desorption in soils: a multiscaleassessment. In Biophysico-Chemical Processes of Heavy Metals and Metalloidsin Soil Environments, pp. 97–124. Edited by A. Violante, P. M.Huang & G. M. Gadd. New Jersey: Wiley.
  46. Boswell, C. D., Dick, R. E. & Macaskie, L. E. ( 1999; ). The effect of heavy metals and other environmental conditionson the anaerobic phosphate metabolism of Acinetobacter johnsonii. Microbiology 145, 1711–1720.[CrossRef]
    [Google Scholar]
  47. Boswell, C. D., Dick, R. E., Eccles, H. & Macaskie, L. E. ( 2001; ). Phosphate uptake and release by Acinetobacterjohnsonii in continuous culture and coupling of phosphate release toheavy metal accumulation. J Ind Microbiol Biotechnol 26, 333–340.[CrossRef]
    [Google Scholar]
  48. Bottjer, D. J. ( 2005; ). Geobiology andthe fossil record: eukaryotic, microbes, and their interactions. Palaeogeogr Palaeoclimatol Palaeoecol 219, 5–21.[CrossRef]
    [Google Scholar]
  49. Boukhalfa, H., Icopini, G. A., Reilly, S. D. & Neu, M. P. ( 2007; ). Plutonium(IV) reduction by themetal-reducing bacteria Geobacter metallireducens GS15 and Shewanellaoneidensis MR1. Appl Environ Microbiol 73, 5897–5903.[CrossRef]
    [Google Scholar]
  50. Boult, S., Hand, V. L. & Vaughan, D. J. ( 2006; ). Microbial controls on metal mobility under the low nutrientfluxes found throughout the subsurface. Sci Total Environ 372, 299–305.[CrossRef]
    [Google Scholar]
  51. Bousserrhine, N., Gasser, U. G., Jeanroy, E. & Berthelin,J. ( 1999; ). Bacterial and chemical reductive dissolutionof Mn-, Co- Cr-, and Al-substituted goethites. Geomicrobiol J 16, 245–258.[CrossRef]
    [Google Scholar]
  52. Bowen, A. D., Davidson, F. A., Keatch, R. & Gadd, G. M. ( 2007; ). Induction of contour sensing in Aspergillusniger by stress and its relevance to fungal growth mechanics and hyphaltip structure. Fungal Genet Biol 44, 484–491.[CrossRef]
    [Google Scholar]
  53. Bradley, R., Burt, A. J. & Read, D. J. ( 1981; ). Mycorrhizal infection and resistance to heavy metals. Nature 292, 335–337.[CrossRef]
    [Google Scholar]
  54. Bradley, B., Burt, A. J. & Read, D. J. ( 1982; ). The biology of mycorrhiza in the Ericaceae. VIII. The role ofmycorrhizal infection in heavy metal resistance. New Phytol 91, 197–209.[CrossRef]
    [Google Scholar]
  55. Brandl, H. ( 2001; ). Heterotrophic leaching.In Fungi in Bioremediation, pp. 383–423. Edited by G. M. Gadd.Cambridge: Cambridge University Press.
  56. Brandl, H. & Faramarzi, M. A. ( 2006; ). Microbe-metal-interactions for the biotechnological treatment of metal-containingsolid waste. China Particuolog 4, 93–97.[CrossRef]
    [Google Scholar]
  57. Brantley, S. L., Goldhaber, M. B. & Ragnarsdottir, K. V. ( 2007; ). Crossing disciplines and scales to understandthe critical zone. Elements 3, 307–314.[CrossRef]
    [Google Scholar]
  58. Brehm, U., Gorbushina, A. & Mottershead, D. ( 2005; ). The role of microorganisms and biofilms in the breakdownand dissolution of quartz and glass. Palaeogeogr, Palaeoclimatol,Palaeoecol 219, 117–129.
    [Google Scholar]
  59. Bronick, C. J. & Lal, R. ( 2005; ).Soil structure and management: a review. Geoderma 124, 3–22.[CrossRef]
    [Google Scholar]
  60. Brown, G. E., Foster, A. L. & Ostergren, J. D. ( 1999; ). Mineral surfaces and bioavailability of heavy metals: amolecular-scale perspective. Proc Natl Acad Sci U S A 96, 3388–3395.[CrossRef]
    [Google Scholar]
  61. Brown, G. E., Trainor, T. P. & Chaka, A. M. ( 2008; ). Geochemistry of mineral surfaces and factors affecting theirchemical reactivity. In Chemical Bonding at Surfaces and Interfaces,pp. 457–509. Edited by A. Nilsson, L. G. M. Pettersson & J. K. Norskov.Amsterdam: Elsevier.
  62. Burford, E. P., Fomina, M. & Gadd, G. M. ( 2003a; ). Fungal involvement in bioweathering and biotransformationof rocks and minerals. Mineral Mag 67, 1127–1155.[CrossRef]
    [Google Scholar]
  63. Burford, E. P., Kierans, M. & Gadd, G. M. ( 2003b; ). Geomycology: fungal growth in mineral substrata. Mycologist 17, 98–107.[CrossRef]
    [Google Scholar]
  64. Burford, E. P., Hillier, S. & Gadd, G. M. ( 2006; ). Biomineralization of fungal hyphae with calcite (CaCO3) and calcium oxalate mono- and dihydrate in carboniferous limestonemicrocosms. Geomicrobiol J 23, 599–611.[CrossRef]
    [Google Scholar]
  65. Burgstaller, W. & Schinner, F. ( 1993; ). Leaching of metals with fungi. J Biotechnol 27, 91–116.[CrossRef]
    [Google Scholar]
  66. Cairney, J. W. G. & Meharg, A. A. ( 2003; ). Ericoid mycorrhiza: a partnership that exploits harsh edaphic conditions. Eur J Soil Sci 54, 735–740.[CrossRef]
    [Google Scholar]
  67. Callot, G., Guyon, A. & Mousain, D. ( 1985a; ). Inter-relation entre aiguilles de calcite et hyphes mycéliens. Agronomie 5, 209–216.[CrossRef]
    [Google Scholar]
  68. Callot, G., Mousain, D. & Plassard, C. ( 1985b; ). Concentrations de carbonate de calcium sur les parois des hyphesmycéliens. Agronomie 5, 143–150.[CrossRef]
    [Google Scholar]
  69. Cameron, S., Urquart, D.C.M. & Young, M.E. ( 1997; ). Biological growths on sandstone buildings: control and treatment. Historic Scotland Technical Advice Note 10.
  70. Chafetz, H. S. & Buczynski, C. ( 1992; ). Bacterially induced lithification of microbial mats. Palaios 7, 277–293.[CrossRef]
    [Google Scholar]
  71. Chasteen, T. G. & Bentley, R. ( 2003; ). Biomethylation of selenium and tellurium: microorganisms and plants. Chem Rev 103, 1–26.[CrossRef]
    [Google Scholar]
  72. Chen, J., Blume, H.-P. & Beyer, L. ( 2000; ). Weathering of rocks induced by lichen colonization – a review. Catena 39, 121–146.[CrossRef]
    [Google Scholar]
  73. Chen, B. D., Jakobsen, I., Roos, P. & Zhu, Y. G. ( 2005a; ). Effects of the mycorrhizal fungus Glomus intraradices on uranium uptake and accumulation by Medicago truncatula L.from uranium-contaminated soil. Plant Soil 275, 349–359.[CrossRef]
    [Google Scholar]
  74. Chen, B. D., Zhu, Y. G., Zhang, X. H. & Jakobsen, I. ( 2005b; ). The influence of mycorrhiza on uranium and phosphorusuptake by barley plants from a field-contaminated soil. EnvironSci Pollut Res Int 12, 325–331.
    [Google Scholar]
  75. Chorover, J., Kretzschmar, R., Garcia-Pichel, F. & Sparks,D. L. ( 2007; ). Soil biogeochemical processes withinthe critical zone. Elements 3, 321–326.[CrossRef]
    [Google Scholar]
  76. Christie, P., Li, X. L. & Chen, B. D. ( 2004; ). Arbuscular mycorrhiza can depress translocation of zinc to shootsof host plants in soils moderately polluted with zinc. Plant Soil 261, 209–217.[CrossRef]
    [Google Scholar]
  77. Cockell, C. S. & Herrera, A. ( 2008; ). Why are some microorganisms boring? Trends Microbiol 16, 101–106.[CrossRef]
    [Google Scholar]
  78. Cockell, C. S., Olsson, K., Herrera, A. & Meunier, A. ( 2009a; ). Alteration textures in terrestrial volcanic glassand the associated bacterial community. Geobiology 7, 50–65.[CrossRef]
    [Google Scholar]
  79. Cockell, C. S., Olsson, K., Herrera, A., Kelly, L., Thorsteinsson,T. & Marteinsson, V. ( 2009b; ). Bacteria in weatheredbasaltic glass, Iceland. Geomicrobiol J 26, 491–507.[CrossRef]
    [Google Scholar]
  80. Cromack, K., Jr, Solkins, P., Grausten, W. C., Speidel, K.,Todd, A. W., Spycher, G., Li, C. Y. & Todd, R. L. ( 1979; ). Calcium oxalate accumulation and soil weathering in mats of the hypogeousfungus Hysterangium crassum. Soil Biol Biochem 11, 463–468.[CrossRef]
    [Google Scholar]
  81. Daghino, S., Turci, F., Tomatis, M., Favier, A., Perotto, S.,Douki, T. & Fubini, B. ( 2006; ). Soil fungi reducethe iron content and the DNA damaging effects of asbestos fibers. Environ Sci Technol 40, 5793–5798.[CrossRef]
    [Google Scholar]
  82. Dameron, C. T., Reese, R. N., Mehra, R. K., Kortan, A. R., Carroll,P. J., Steigerwald, M. L., Brus, L. E. & Winge, D. R. ( 1989; ). Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338, 596–597.[CrossRef]
    [Google Scholar]
  83. De La Torre, M. A., Gomez-Alarcon, G., Vizcaino, C. & Garcia,M. T. ( 1992; ). Biochemical mechanisms of stone alterationcarried out by filamentous fungi living on monuments. Biogeochemistry 19, 129–147.[CrossRef]
    [Google Scholar]
  84. De los Rios, A., Galvan, V. & Ascaso, C. ( 2004; ). In situ microscopical diagnosis of biodeteriorationprocesses at the convent of Santa Cruz la Real, Segovia, Spain. Int Biodeterior Biodegrad 51, 113–120.
    [Google Scholar]
  85. Dhankher, O. P., Li, Y. J., Rosen, B. P., Shi, J., Salt, D.,Senecoff, J. F., Sashti, N. A. & Meagher, R. B. ( 2002; ). Engineering tolerance and hyperaccumulation of arsenic in plants by combiningarsenate reductase and gamma-glutamylcysteine synthetase expression. Nat Biotechnol 20, 1140–1145.[CrossRef]
    [Google Scholar]
  86. Dombrowski, P. M., Long, W., Parley, K. J., Mahony, J. D., Capitani,J. F. & Di Toro, D. M. ( 2005; ). Thermodynamic analysisof arsenic methylation. Environ Sci Technol 39, 2169–2176.[CrossRef]
    [Google Scholar]
  87. Dove, P. M., De Yoreo, J. J. & Weiner, S. (editors) ( 2003; ). Biomineralization. Reviews in Mineralogy andGeochemistry, vol. 54. Washington, DC: Mineralogical Society of America.
  88. Dowdle, P. R. & Oremland, R. S. ( 1998; ). Microbial oxidation of elemental selenium in soil slurries and bacterialcultures. Environ Sci Technol 32, 3749–3755.[CrossRef]
    [Google Scholar]
  89. Drever, J. I. & Stillings, L. L. ( 1997; ). The role of organic acids in mineral weathering. Coll Surf 120, 167–181.[CrossRef]
    [Google Scholar]
  90. Dungan, R. S. & Frankenberger, W. T. ( 1999; ). Microbial transformations of selenium and the bioremediationof seleniferous environments. Bioremed 3, 171–188.[CrossRef]
    [Google Scholar]
  91. Dupraz, C. & Visscher, P. T. ( 2005; ). Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol 13, 429–438.[CrossRef]
    [Google Scholar]
  92. Dupraz, C., Reid, R. P., Braissant, O., Decho, A. W., Norman,R. S. & Visscher, P. T. ( 2009; ). Processes of carbonateprecipitation in modern microbial mats. Earth Sci Rev 96, 141–162.[CrossRef]
    [Google Scholar]
  93. Edwards, K. J., Hu, B., Hamers, R. J. & Banfield, J. F. ( 2001; ). A new look at microbial leaching patternson sulfide minerals. FEMS Microbiol Ecol 34, 197–206.[CrossRef]
    [Google Scholar]
  94. Edwards, K. J., Bach, W. & McCollom, T. M. ( 2005; ). Geomicrobiology in oceanography: microbe–mineral interactionsat and below the seafloor. Trends Microbiol 13, 449–456.[CrossRef]
    [Google Scholar]
  95. Ehrlich, H. L. ( 1996; ). How microbesinfluence mineral growth and dissolution. Chem Geol 132, 5–9.[CrossRef]
    [Google Scholar]
  96. Ehrlich, H. L. ( 1997; ). Microbes andmetals. Appl Microbiol Biotechnol 48, 687–692.[CrossRef]
    [Google Scholar]
  97. Ehrlich, H. L. ( 1998; ). Geomicrobiology:its significance for geology. Earth Sci Rev 45, 45–60.[CrossRef]
    [Google Scholar]
  98. Ehrlich, H. L. & Newman, D. K. ( 2009; ). Geomicrobiology, 5th edn. Boca Raton, FL: CRC Press/Taylor &Francis.
  99. Eide, D. J. ( 2000; ). Metal ion transportin eukaryotic microorganisms: insights from Saccharomyces cerevisiae. Adv Microb Physiol 43, 1–38.
    [Google Scholar]
  100. Finneran, K. T., Housewright, M. E. & Lovley, D. R. ( 2002a; ). Multiple influences of nitrate on uranium solubilityduring bioremediation of uranium-contaminated subsurface sediments. Environ Microbiol 4, 510–516.[CrossRef]
    [Google Scholar]
  101. Finneran, K. T., Anderson, R. T., Nevin, K. P. & Lovley,D. R. ( 2002b; ). Bioremediation of uranium-contaminatedaquifers with microbial U(VI) reduction. Soil SedimentContam 11, 339–357.
    [Google Scholar]
  102. Fomina, M. & Gadd, G. M. ( 2002a; ).Influence of clay minerals on the morphology of fungal pellets. Mycol Res 106, 107–117.[CrossRef]
    [Google Scholar]
  103. Fomina, M. & Gadd, G. M. ( 2002b; ).Metal sorption by biomass of melanin-producing fungi grown in clay-containingmedium. J Chem Technol Biotechnol 78, 23–34.
    [Google Scholar]
  104. Fomina, M. A., Alexander, I. J., Hillier, S. & Gadd, G.M. ( 2004; ). Zinc phosphate and pyromorphite solubilizationby soil plant-symbiotic fungi. Geomicrobiol J 21, 351–366.[CrossRef]
    [Google Scholar]
  105. Fomina, M., Hillier, S., Charnock, J. M., Melville, K., Alexander,I. J. & Gadd, G. M. ( 2005a; ). Role of oxalic acidover-excretion in toxic metal mineral transformations by Beauveria caledonica. Appl Environ Microbiol 71, 371–381.[CrossRef]
    [Google Scholar]
  106. Fomina, M. A., Alexander, I. J., Colpaert, J. V. & Gadd,G. M. ( 2005b; ). Solubilization of toxic metal mineralsand metal tolerance of mycorrhizal fungi. Soil Biol Biochem 37, 851–866.[CrossRef]
    [Google Scholar]
  107. Fomina, M., Burford, E. P. & Gadd, G. M. ( 2005c; ). Toxic metals and fungal communities. In The FungalCommunity. Its Organization and Role in the Ecosystem, pp. 733–758. Edited by J. Dighton, J. F. White & P. Oudemans. Boca Raton, FL:CRC Press.
  108. Fomina, M., Charnock, J. M., Hillier, S., Alexander, I. J. &Gadd, G. M. ( 2006; ). Zinc phosphate transformationsby the Paxillus involutus/pine ectomycorrhizal association. Microb Ecol 52, 322–333.[CrossRef]
    [Google Scholar]
  109. Fomina, M., Charnock, J. M., Hillier, S., Alvarez, R. &Gadd, G. M. ( 2007a; ). Fungal transformations of uraniumoxides. Environ Microbiol 9, 1696–1710.[CrossRef]
    [Google Scholar]
  110. Fomina, M., Charnock, J., Bowen, A. D. & Gadd, G. M. ( 2007b; ). X-ray absorption spectroscopy (XAS) oftoxic metal mineral transformations by fungi. Environ Microbiol 9, 308–321.[CrossRef]
    [Google Scholar]
  111. Fomina, M., Podgorsky, V. S., Olishevska, S. V., Kadoshnikov,V. M., Pisanska, I. R., Hillier, S. & Gadd, G. M. ( 2007c; ). Fungal deterioration of barrier concrete used in nuclear wastedisposal. Geomicrobiol J 24, 643–653.[CrossRef]
    [Google Scholar]
  112. Fomina, M., Charnock, J. M., Hillier, S., Alvarez, R., FrancisLivens, F. & Gadd, G. M. ( 2008; ). Role of fungiin the biogeochemical fate of depleted uranium. Curr Biol 18, R375–R377.[CrossRef]
    [Google Scholar]
  113. Fomina, M., Burford, E. P., Hillier, S., Kierans, M. & Gadd,G. M. ( 2010; ). Rock-building fungi. GeomicrobiolJ in press
    [Google Scholar]
  114. Fortin, D., Ferris, F. G. & Beveridge, T. J. ( 1997; ). Surface-mediated mineral development by bacteria. In Reviews in Mineralogy, vol. 35, pp. 161–180. Edited by J. Banfield &K. H. Nealson. Washington, DC: Mineralogical Society of America.
  115. Gadd, G. M. ( 1986; ). The uptake of heavymetals by fungi and yeasts: the chemistry and physiology of the process andapplications for biotechnology. In Immobilisation of Ions by Bio-sorption, pp. 135–147. Edited by H. Eccles & S. Hunt. Chichester: EllisHorwood.
  116. Gadd, G. M. ( 1992a; ). Metals and microorganisms:a problem of definition. FEMS Microbiol Lett 100, 197–204.[CrossRef]
    [Google Scholar]
  117. Gadd, G. M. ( 1992b; ). Microbial controlof heavy metal pollution. In Microbial Control of Pollution, pp.59–88. Edited by J. C. Fry, G. M. Gadd, R. A. Herbert, C. W. Jones &I. Watson-Craik. Cambridge: Cambridge University Press.
  118. Gadd, G. M. ( 1993a; ). Interactions offungi with toxic metals. New Phytol 124, 25–60.[CrossRef]
    [Google Scholar]
  119. Gadd, G. M. ( 1993b; ). Microbial formationand transformation of organometallic and organometalloid compounds. FEMS Microbiol Rev 11, 297–316.[CrossRef]
    [Google Scholar]
  120. Gadd, G. M. ( 1999; ). Fungal productionof citric and oxalic acid: importance in metal speciation, physiology andbiogeochemical processes. Adv Microb Physiol 41, 47–92.
    [Google Scholar]
  121. Gadd, G. M. ( 2000a; ). Bioremedial potentialof microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 11, 271–279.[CrossRef]
    [Google Scholar]
  122. Gadd, G. M. ( 2000b; ). Microbial interactionswith tributyltin compounds: detoxification, accumulation, and environmentalfate. Sci Total Environ 258, 119–127.[CrossRef]
    [Google Scholar]
  123. Gadd, G. M. ( 2001a; ). Accumulation andtransformation of metals by microorganisms. In Biotechnology, a Multi-volumeComprehensive Treatise, vol. 10, Special Processes, pp. 225–264. Edited by H.-J. Rehm, G. Reed, A. Puhler & P. Stadler. Weinheim:Wiley-VCH.
  124. Gadd, G. M. (editor) ( 2001b; ). Fungi in Bioremediation. Cambridge: Cambridge University Press.
  125. Gadd, G. M. ( 2004; ). Microbial influenceon metal mobility and application for bioremediation. Geoderma 122, 109–119.[CrossRef]
    [Google Scholar]
  126. Gadd, G. M. ( 2005; ). Microorganisms intoxic metal polluted soils. In Microorganisms in Soils: Roles in Genesisand Functions, pp. 325–356. Edited by F. Buscot & A. Varma.Berlin: Springer-Verlag.
  127. Gadd, G. M. (editor) ( 2006; ). Fungi in Biogeochemical Cycles. Cambridge: Cambridge University Press.
  128. Gadd, G. M. ( 2007; ). Geomycology: biogeochemicaltransformations of rocks, minerals, metals and radionuclides by fungi, bioweatheringand bioremediation. Mycol Res 111, 3–49.[CrossRef]
    [Google Scholar]
  129. Gadd, G. M. ( 2008a; ). Bacterial and fungalgeomicrobiology: a problem with communities? Geobiology 6, 278–284.[CrossRef]
    [Google Scholar]
  130. Gadd, G. M. ( 2008b; ). Fungi and theirrole in the biosphere. In Encyclopedia of Ecology, pp. 1709–1717.Edited by S. E. Jorgensen & B. Fath. Amsterdam: Elsevier.
  131. Gadd, G. M. ( 2009a; ). Heavy metal pollutants:environmental and biotechnological aspects. In Encyclopedia of Microbiology, pp. 321–334. Edited by M. Schaechter. Oxford: Elsevier.
  132. Gadd, G. M. ( 2009b; ). Biosorption: criticalreview of scientific rationale, environmental importance and significancefor pollution treatment. J Chem Technol Biotechnol 84, 13–28.[CrossRef]
    [Google Scholar]
  133. Gadd, G. M. & Griffiths, A. J. ( 1978; ). Microorganisms and heavy metal toxicity. Microb Ecol 4, 303–317.[CrossRef]
    [Google Scholar]
  134. Gadd, G. M. & Raven, J. A. ( 2010; ).Geomicrobiology of eukaryotic microorganisms. Geomicrobiol Jin press
    [Google Scholar]
  135. Gadd, G. M. & Sayer, J. A. ( 2000; ).Fungal transformations of metals and metalloids. In Environmental Microbe–MetalInteractions, pp. 237–256. Edited by D. R. Lovley. Washington,DC: American Society for Microbiology.
  136. Gadd, G. M. & White, C. ( 1990; ).Biosorption of radionuclides by yeast and fungal biomass. J ChemTechnol Biotechnol 49, 331–343.
    [Google Scholar]
  137. Gadd, G. M. & White, C. ( 1993; ).Microbial treatment of metal pollution – a working biotechnology? Trends Biotechnol 11, 353–359.[CrossRef]
    [Google Scholar]
  138. Gadd, G. M., Chudek, J. A., Foster, R. & Reed, R. H. ( 1984; ). The osmotic responses of Penicillium ochro-chloron: changes in internal solute levels in response to copper and salt stress. J Gen Microbiol 130, 1969–1975.
    [Google Scholar]
  139. Gadd, G. M., Fomina, M. & Burford, E. P. ( 2005; ). Fungal roles and function in rock, mineral and soil transformations.In Microorganisms in Earth Systems – Advances in Geomicrobiology, pp. 201–231. Edited by G. M. Gadd, K. T. Semple &H. M. Lappin-Scott. Cambridge: Cambridge University Press.
  140. Gadd, G. M., Burford, E. P., Fomina, M. & Melville, K. ( 2007; ). Mineral transformation and biogeochemical cycles:a geomycological perspective. In Fungi in the Environment, pp. 78–111.Edited by G. M. Gadd, P. Dyer & S. Watkinson. Cambridge: Cambridge UniversityPress.
  141. Garnham, G. W., Codd, G. A. & Gadd, G. M. ( 1992; ). Accumulation of cobalt, zinc and manganese by the estuarinegreen microalga Chlorella salina immobilized in alginate microbeads. Environ Sci Technol 26, 1764–1770.[CrossRef]
    [Google Scholar]
  142. Garnham, G. W., Codd, G. A. & Gadd, G. M. ( 1993; ). Uptake of cobalt and caesium by microalgal- and cyanobacterial-claymixtures. Microb Ecol 25, 71–82.
    [Google Scholar]
  143. Gaylarde, C. & Morton, G. ( 2002; ).Biodeterioration of mineral materials. In Environmental Microbiology,vol. 1, pp. 516–528. Edited by G. Bitton. New York: Wiley.
  144. Gharieb, M. M. & Gadd, G. M. ( 1999; ). Influence of nitrogen source on the solubilization of natural gypsum (CaSO4.2H2O) and the formation of calcium oxalate by differentoxalic and citric acid-producing fungi. Mycol Res 103, 473–481.[CrossRef]
    [Google Scholar]
  145. Gharieb, M. M., Sayer, J. A. & Gadd, G. M. ( 1998; ). Solubilization of natural gypsum (CaSO4.2H2O) and the formation of calcium oxalate by Aspergillus niger and Serpula himantioides. Mycol Res 102, 825–830.[CrossRef]
    [Google Scholar]
  146. Gharieb, M. M., Kierans, M. & Gadd, G. M. ( 1999; ). Transformation and tolerance of tellurite by filamentousfungi: accumulation, reduction and volatilization. Mycol Res 103, 299–305.[CrossRef]
    [Google Scholar]
  147. Giller, K. E., Witter, E. & McGrath, S. P. ( 2009; ). Heavy metals and soil microbes. Soil Biol Biochem 41, 2031–2037.[CrossRef]
    [Google Scholar]
  148. Gilmour, C. & Riedel, G. ( 2009; ).Biogeochemistry of trace metals and metalloids. In Encyclopedia of InlandWaters, pp. 7–15. Edited by G. E. Likens. Amsterdam: Elsevier.
  149. Glasauer, S., Langley, S. & Beveridge, T. J. ( 2001; ). Sorption of Fe (hydr)oxides to the surface of Shewanella putrefaciens: cell-bound fine-grained minerals are not alwaysformed de novo. Appl Environ Microbiol 67, 5544–5550.[CrossRef]
    [Google Scholar]
  150. Glasauer, S., Langley, S. & Beveridge, T. J. ( 2002; ). Intracellular iron minerals in a dissimilatory iron-reducingbacterium. Science 295, 117–119.[CrossRef]
    [Google Scholar]
  151. Glasauer, S., Beveridge, T. J., Burford, E. P., Harper, F. A. &Gadd, G. M. ( 2004; ). Metals and metalloids, transformationsby microorganisms. In Encyclopedia of Soils in the Environment, pp.438–447. Edited by D. Hillel, C. Rosenzweig, D. S. Powlson, K. M. Scow,M. J. Singer, D. L. Sparks & J. Hatfield. Amsterdam: Elsevier.
  152. Gleeson, D. B., Clipson, N. J. W., Melville, K., Gadd, G. M. &McDermott, F. P. ( 2005; ). Mineralogical control offungal community structure in a weathered pegmatitic granite. Microb Ecol 50, 360–368.[CrossRef]
    [Google Scholar]
  153. Gleeson, D. B., Kennedy, N. M., Clipson, N. J. W., Melville,K., Gadd, G. M. & McDermott, F. P. ( 2006; ). Mineralogicalinfluences on bacterial community structure on a weathered pegmatitic granite. Microb Ecol 51, 526–534.[CrossRef]
    [Google Scholar]
  154. Gleeson, D., McDermott, F. & Clipson, N. ( 2007; ). Understanding microbially active biogeochemical environments. Adv Appl Microbiol 62, 81–104.
    [Google Scholar]
  155. Gleeson, D. B., Melville, K., McDermott, F. P., Clipson, N.J. W. & Gadd, G. M. ( 2010; ). Molecular characterizationof fungal communities in sandstone. Geomicrobiol Jin press
    [Google Scholar]
  156. Gohre, V. & Paszkowski, U. ( 2006; ).Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223, 1115–1122.[CrossRef]
    [Google Scholar]
  157. Golubic, S., Radtke, G. & Le Campion-Alsumard, T. ( 2005; ). Endolithic fungi in marine ecosystems. Trends Microbiol 13, 229–235.[CrossRef]
    [Google Scholar]
  158. Gonzalez-Chavez, M. C., Carrillo-Gonzalez, R., Wright, S. F. &Nichols, K. A. ( 2004; ). The role of glomalin, a proteinproduced by arbuscular mycorrhizal fungi, in sequestering potentially toxicelements. Environ Pollut 130, 317–323.[CrossRef]
    [Google Scholar]
  159. Gorbushina, A. A. ( 2007; ). Life on therocks. Environ Microbiol 9, 1613–1631.[CrossRef]
    [Google Scholar]
  160. Gorbushina, A. A. & Broughton, W. J. ( 2009; ). Microbiology of the atmosphere–rock interface: how biologicalinteractions and physical stresses modulate a sophisticated microbial ecosystem. Annu Rev Microbiol 63, 431–450.[CrossRef]
    [Google Scholar]
  161. Gorbushina, A. A. & Krumbein, W. E. ( 2005; ). Role of organisms in wear down of rocks and minerals. In Microorganismsin Soils: Roles in Genesis and Functions, pp. 59–84. Edited byF. Buscot & A. Varma. Berlin: Springer-Verlag.
  162. Gorbushina, A. A., Krumbein, W. E., Hamann, R., Panina, L.,Soucharjevsky, S. & Wollenzien, U. ( 1993; ). Onthe role of black fungi in colour change and biodeterioration of antique marbles. Geomicrobiol J 11, 205–221.[CrossRef]
    [Google Scholar]
  163. Gorbushina, A. A., Boettcher, M., Brumsack, H. J., Krumbein,W. E. & Vendrell-Saz, M. ( 2001; ). Biogenic forsteriteand opal as a product of biodeterioration and lichen stromatolite formationin table mountain systems (tepuis) of Venezuela. GeomicrobiolJ 18, 117–132.
    [Google Scholar]
  164. Grote, G. & Krumbein, W. E. ( 1992; ). Microbial precipitation of manganese by bacteria and fungi from desertrock and rock varnish. Geomicrobiol J 10, 49–57.[CrossRef]
    [Google Scholar]
  165. Gu, J. D. ( 2009; ). Corrosion, microbial.In Encyclopedia of Microbiology, 3rd edn, pp. 259–269. Editedby M. Schaechter. Amsterdam: Elsevier.
  166. Gu, J. D., Ford, T. E., Berke, N. S. & Mitchell, R. ( 1998; ). Biodeterioration of concrete by the fungus Fusarium. Int Biodeterior Biodegrad 41, 101–109.[CrossRef]
    [Google Scholar]
  167. Haas, J. R. & Purvis, O. W. ( 2006; ). Lichen biogeochemistry. In Fungi in Biogeochemical Cycles, pp.344–376. Edited by G. M. Gadd. Cambridge: Cambridge University Press.
  168. Hamilton, W. A. ( 2003; ). Microbiallyinfluenced corrosion as a model system for the study of metal–microbeinteractions: a unifying electron transfer hypothesis. Biofouling 19, 65–76.[CrossRef]
    [Google Scholar]
  169. Hennebel, T., Gusseme, B. D. & Verstraete, W. ( 2009; ). Biogenic metals in advanced water treatment. Trends Biotechnol 27, 90–98.[CrossRef]
    [Google Scholar]
  170. Hirsch, P., Eckhardt, F. E. W. & Palmer, R. J., Jr ( 1995a; ). Methods for the study of rock inhabiting microorganisms –a mini review. J Microbiol Methods 23, 143–167.[CrossRef]
    [Google Scholar]
  171. Hochella, M. F. ( 2002; ). Sustaining Earth:thoughts on the present and future roles in mineralogy in environmental science. Mineral Mag 66, 627–652.[CrossRef]
    [Google Scholar]
  172. Hockin, S. L. & Gadd, G. M. ( 2003; ). Linked redox-precipitation of sulfur and selenium under anaerobic conditionsby sulfate-reducing bacterial biofilms. Appl Environ Microbiol 69, 7063–7072.[CrossRef]
    [Google Scholar]
  173. Hockin, S. & Gadd, G. M. ( 2006; ).Removal of selenate from sulphate-containing media by sulphate-reducing bacterialbiofilms. Environ Microbiol 8, 816–826.[CrossRef]
    [Google Scholar]
  174. Hockin, S. & Gadd, G. M. ( 2007; ).Bioremediation of metals by precipitation and cellular binding. In Sulphate-reducingBacteria: Environmental and Engineered Systems, pp. 405–434. Editedby L. L. Barton & W. A. Hamilton. Cambridge: Cambridge University Press.
  175. Hoffland, E., Kuyper, T. W., Wallander, H., Plassard, C., Gorbushina,A. A., Haselwandter, K., Holmstrom, S., Landeweert, R., Lundstrom, U. S. &other authors ( 2004; ). The role of fungi in weathering. Front Ecol Environ 2, 258–264.[CrossRef]
    [Google Scholar]
  176. Holden, J. F. & Adams, M. W. W. ( 2003; ). Microbe–metal interactions in marine hydrothermal vents. Curr Opin Chem Biol 7, 160–165.[CrossRef]
    [Google Scholar]
  177. Hoppert, M., Flies, C., Pohl, W., Gunzl, B. & Schneider,J. ( 2004; ). Colonization strategies of lithobionticmicroorganisms on carbonate rocks. Environ Geol 46, 421–428.
    [Google Scholar]
  178. Huang, J. W. W., Chen, J. J., Berti, W. R. & Cunningham,S. D. ( 1997; ). Phytoremediation of lead-contaminatedsoils: role of synthetic chelates in lead phytoextraction. EnvironSci Technol 31, 800–805.
    [Google Scholar]
  179. Huang, P. M., Wang, M. C. & Wang, M. K. ( 2004; ). Mineral–organic–microbial interactions. In Encyclopedia of Soils in the Environment, pp. 486–499. Edited byD. Hillel, C. Rosenzweig, D. S. Powlson, K. M. Scow, M. J. Singer, D. L. Sparks &J. Hatfield. Amsterdam: Elsevier.
  180. Huang, P.-M., Wang, M.-K. & Chiu, C.-Y. ( 2005; ). Soil mineral–organic matter–microbe interactions:impacts on biogeochemical processes and biodiversity in soils. Pedobiologia (Jena) 49, 609–635.[CrossRef]
    [Google Scholar]
  181. Jacobs, H., Boswell, G. P., Ritz, K., Davidson, F. A. &Gadd, G. M. ( 2002a; ). Solubilization of metal phosphatesby Rhizoctonia solani. Mycol Res 106, 1468–1479.[CrossRef]
    [Google Scholar]
  182. Jacobs, H., Boswell, G. P., Ritz, K., Davidson, F. A. &Gadd, G. M. ( 2002b; ). Solubilization of calcium phosphateas a consequence of carbon translocation by Rhizoctonia solani. FEMS Microbiol Ecol 40, 65–71.[CrossRef]
    [Google Scholar]
  183. Jarosz-Wilkołazka, A. & Gadd, G. M. ( 2003; ). Oxalate production by wood-rotting fungi growing in toxicmetal-amended medium. Chemosphere 52, 541–547.[CrossRef]
    [Google Scholar]
  184. Jerez, C. A. ( 2009; ). Metal extractionand biomining. In Encyclopedia of Microbiology, 3rd edn, pp. 407–420.Edited by M. Schaechter. Amsterdam: Elsevier.
  185. Jongmans, A. G., van Breemen, N., Lundstrom, U. S., van Hees,P. A. W., Finlay, R. D., Srinivasan, M., Unestam, T., Giesler, R., Melkerud,P.-A. & Olsson, M. ( 1997; ). Rock-eating fungi. Nature 389, 682–683.[CrossRef]
    [Google Scholar]
  186. Kalinowski, B. E., Liermann, L. J., Givens, S. & Brantley,S. L. ( 2000; ). Rates of bacteria-promoted solubilizationof Fe from minerals: a review of problems and approaches. ChemGeol 169, 357–370.
    [Google Scholar]
  187. Karlson, U. & Frankenberger, W. T. ( 1988; ). Effects of carbon and trace element addition on alkylselenide productionby soil. Soil Sci Soc Am J 52, 1640–1644.[CrossRef]
    [Google Scholar]
  188. Karlson, U. & Frankenberger, W. T. ( 1989; ). Accelerated rates of selenium volatilization from California soils. Soil Sci Soc Am J 53, 749–753.[CrossRef]
    [Google Scholar]
  189. Kartal, S. N., Katsumata, N. & Imamura, Y. ( 2006; ). Removal of copper, chromium, and arsenic from CCA-treatedwood by organic acids released by mold and staining fungi. ForProd J 56, 33–37.
    [Google Scholar]
  190. Kierans, M., Staines, A. M., Bennett, H. & Gadd, G. M. ( 1991; ). Silver tolerance and accumulation in yeasts. Biol Met 4, 100–106.[CrossRef]
    [Google Scholar]
  191. Kim, B. H. & Gadd, G. M. ( 2008; ). Bacterial Physiology and Metabolism. Cambridge: Cambridge UniversityPress.
  192. Klaus-Joerger, T., Joerger, R., Olsson, E. & Granquist,C.-G. ( 2001; ). Bacteria as workers in the living factory:metal-accumulating bacteria and their potential for materials sciences. Trends Biotechnol 19, 15–20.[CrossRef]
    [Google Scholar]
  193. Koele, N., Turpault, M.-P., Hildebrand, E. E., Uroz, S. &Frey-Klett, P. ( 2009; ). Interactions between mycorrhizalfungi and mycorrhizosphere bacteria during mineral weathering: budget analysisand bacterial quantification. Soil Biol Biochem 41, 1935–1942.[CrossRef]
    [Google Scholar]
  194. Kolo, K. & Claeys, P. ( 2005; ). In vitro formation of Ca-oxalates and the mineral glushinskite by fungalinteraction with carbonate substrates and seawater. Biogeosciences 2, 277–293.[CrossRef]
    [Google Scholar]
  195. Kolo, K., Keppens, E., Preat, A. & Claeys, P. ( 2007; ). Experimental observations on fungal diagenesis of carbonatesubstrates. J Geophys Res 112, 1–20.
    [Google Scholar]
  196. Konhauser, K. ( 2007; ). Introductionto Geomicrobiology. Oxford: Blackwell.
  197. Kraemer, S. M., Cheah, S. F., Zapf, R., Xu, J. D., Raymond,K. N. & Sposito, G. ( 1999; ). Effect of hydroxamatesiderophores on Fe release and Pb(II) adsorption by goethite. Geochim Cosmochim Acta 63, 3003–3008.[CrossRef]
    [Google Scholar]
  198. Krantz-Rulcker, C., Allard, B. & Schnurer, J. ( 1993; ). Interactions between a soil fungus, Trichoderma harzianum and IIB metals – adsorption to mycelium and production of complexingmetabolites. Biometals 6, 223–230.
    [Google Scholar]
  199. Krantz-Rulcker, C., Allard, B. & Schnurer, J. ( 1996; ). Adsorption of IIB metals by 3 common soil fungi –comparison and assessment of importance for metal distribution in naturalsoil systems. Soil Biol Biochem 28, 967–975.[CrossRef]
    [Google Scholar]
  200. Krupa, P. & Kozdroj, J. ( 2004; ).Accumulation of heavy metals by ectomycorrhizal fungi colonizing birch treesgrowing in an industrial desert soil. World J Microbiol Biotechnol 20, 427–430.[CrossRef]
    [Google Scholar]
  201. Kumar, R. & Kumar, A. V. ( 1999; ). Biodeterioration of Stone in Tropical Environments: an Overview. Madison,WI: J. Paul Getty Trust.
  202. Landa, E. R. ( 2005; ). Microbial biogeochemistryof uranium mill tailings. Adv Appl Microbiol 57, 113–130.
    [Google Scholar]
  203. Landa, E. R. & Gray, J. R. ( 1995; ).US Geological Survey – results on the environmental fate of uraniummining and milling wastes. J Ind Microbiol 26, 19–31.
    [Google Scholar]
  204. Landeweert, R., Hoffland, E., Finlay, R. D., Kuyper, T. W. &Van Breemen, N. ( 2001; ). Linking plants to rocks: ectomycorrhizalfungi mobilize nutrients from minerals. Trends Ecol Evol 16, 248–254.[CrossRef]
    [Google Scholar]
  205. Lapeyrie, F., Picatto, C., Gerard, J. & Dexheimer, J. ( 1990; ). TEM study of intracellular and extracellular calciumoxalate accumulation by ectomycorrhizal fungi in pure culture or in associationwith Eucalyptus seedlings. Symbiosis 9, 163–166.
    [Google Scholar]
  206. Lapeyrie, F., Ranger, J. & Vairelles, D. ( 1991; ). Phosphate-solubilizing activity of ectomycorrhizal fungi in vitro. Can J Bot 69, 342–346.[CrossRef]
    [Google Scholar]
  207. Lebrun, E., Brugna, M., Baymann, F., Muller, D., Lievremont,D., Lett, M. C. & Nitschke, W. ( 2003; ). Arseniteoxidase, an ancient bioenergetic enzyme. Mol Biol Evol 20, 686–693.[CrossRef]
    [Google Scholar]
  208. Ledin, M., Krantz-Rulcker, C. & Allard, B. ( 1996; ). Zn, Cd and Hg accumulation by microorganisms, organic andinorganic soil components in multicompartment systems. Soil BiolBiochem 28, 791–799.
    [Google Scholar]
  209. Lee, J.-U. & Beveridge, T. J. ( 2001; ). Interaction between iron and Pseudomonas aeruginosa biofilmsattached to Sepharose surfaces. Chem Geol 180, 67–80.[CrossRef]
    [Google Scholar]
  210. Leyval, C. & Joner, E. J. ( 2001; ).Bioavailability of heavy metals in the mycorrhizosphere. In Trace Elementsin the Rhizosphere, pp. 165–185. Edited by G. R. Gobran, W. W.Wenzel & E. Lombi. Boca Raton, FL: CRC Press.
  211. Leyval, C., Turnau, K. & Haselwandter, K. ( 1997; ). Effect of heavy metal pollution on mycorrhizal colonizationand function: physiological, ecological and applied aspects. Mycorrhiza 7, 139–153.[CrossRef]
    [Google Scholar]
  212. Lian, B., Chen, Y., Zhu, L. & Yang, R. ( 2008a; ). Effect of microbial weathering on carbonate rocks. Earth Sci Front 15, 90–99.[CrossRef]
    [Google Scholar]
  213. Lian, B., Wang, B., Pan, M., Liu, C. & Teng, H. H. ( 2008b; ). Microbial release of potassium from K-bearing mineralsby thermophilic fungus Aspergillus fumigatus. GeochimCosmochim Acta 72, 87–98.
    [Google Scholar]
  214. Lisci, L., Monte, M. & Pacini, E. ( 2003; ). Lichens and higher plants on stone: a review. Int BiodeteriorBiodegrad 51, 1–17.
    [Google Scholar]
  215. Lloyd, J. R. ( 2003; ). Microbial reductionof metals and radionuclides. FEMS Microbiol Rev 27, 411–425.[CrossRef]
    [Google Scholar]
  216. Lloyd, J. R. & Lovley, D. R. ( 2001; ). Microbial detoxification of metals and radionuclides. CurrOpin Biotechnol 12, 248–253.
    [Google Scholar]
  217. Lloyd, J. R. & Macaskie, L. E. ( 1998; ). Enzymatic recovery of elemental palladium using sulfate-reducing bacteria. Appl Environ Microbiol 64, 4607–4609.
    [Google Scholar]
  218. Lloyd, J. R. & Renshaw, J. C. ( 2005; ). Bioremediation of radioactive waste: radionuclide-microbe interactionsin laboratory and field-scale studies. Curr Opin Biotechnol 16, 254–260.[CrossRef]
    [Google Scholar]
  219. Lloyd, J. R., Ridley, J., Khizniak, T., Lyalikova, N. N. &Macaskie, L. E. ( 1999a; ). Reduction of technetium by Desulfovibrio desulfuricans: biocatalyst characterization and use ina flow-through bioreactor. Appl Environ Microbiol 65, 2691–2696.
    [Google Scholar]
  220. Lloyd, J. R., Thomas, G. H., Finlay, J. A., Cole, J. A. &Macaskie, L. E. ( 1999b; ). Microbial reduction of technetiumby Escherichia coli and Desulfovibrio desulfuricans: enhancementvia the use of high activity strains and effect of process parameters. Biotechnol Bioeng 66, 122–130.[CrossRef]
    [Google Scholar]
  221. Lloyd, J. R., Lovley, D. R. & Macaskie, L. E. ( 2003; ). Biotechnological application of metal-reducing microorganisms. Adv Appl Microbiol 53, 85–128.
    [Google Scholar]
  222. Lloyd, J. R., Pearce, C. I., Coker, V. S., Pattrick, R. A. D.P., van der Laan, G., Cutting, R., Vaughan, D. V., Paterson-Beedle, M., Mikheenko,I. P. & other authors ( 2008; ). Biomineralization:linking the fossil record to the production of high value functional materials. Geobiology 6, 285–297.[CrossRef]
    [Google Scholar]
  223. Lodewyckx, C., Taghavi, S., Mergeay, M., Vangronsveld, J., Clijsters,H. & van der Lelie, D. ( 2001; ). The effect of recombinantheavy metal resistant endophytic bacteria in heavy metal uptake by their hostplant. Int J Phytoremediation 3, 173–187.[CrossRef]
    [Google Scholar]
  224. Losi, M. E. & Frankenberger, W. T. ( 1998; ). Microbial oxidation and solubilization of precipitated elemental seleniumin soil. J Environ Qual 27, 836–843.
    [Google Scholar]
  225. Lovley, D. R. ( 1995; ). Bioremediationof organic and metal contaminants with dissimilatory metal reduction. J Ind Microbiol 14, 85–93.[CrossRef]
    [Google Scholar]
  226. Lovley, D. R. ( 2000; ). Fe(III)and Mn(IV) reduction. In Environmental Microbe–Metal Interactions, pp. 3–30. Edited by D. R. Lovley. Washington, DC: American Societyfor Microbiology.
  227. Lovley, D. R. ( 2001; ). Anaerobes to therescue. Science 293, 1444–1446.[CrossRef]
    [Google Scholar]
  228. Lovley, D. R. & Coates, J. D. ( 1997; ). Bioremediation of metal contamination. Curr Opin Biotechnol 8, 285–289.[CrossRef]
    [Google Scholar]
  229. Lovley, D. R., Phillips, E. J. P., Gorby, Y. A. & Landa,E. R. ( 1991; ). Microbial reduction of uranium. Nature 350, 413–416.[CrossRef]
    [Google Scholar]
  230. Lunsdorf, H., Erb, R. W., Abraham, W. R. & Timmis, K. N. ( 2000; ). ‘Clay hutches’: a novel interactionbetween bacteria and clay minerals. Environ Microbiol 2, 161–168.[CrossRef]
    [Google Scholar]
  231. Macalady, J. & Banfield, J. F. ( 2003; ). Molecular geomicrobiology: genes and geochemical cycling. Earth Planet Sci Lett 209, 1–17.[CrossRef]
    [Google Scholar]
  232. Macaskie, L. E. ( 1991; ). The applicationof biotechnology to the treatment of wastes produced by the nuclear fuel cycle –biodegradation and bioaccumulation as a means of treating radionuclide-containingstreams. Crit Rev Biotechnol 11, 41–112.[CrossRef]
    [Google Scholar]
  233. Macaskie, L. E., Jeong, B. C. & Tolley, M. R. ( 1994; ). Enzymically accelerated biomineralization of heavy metals:application to the removal of americium and plutonium from aqueous flows. FEMS Microbiol Rev 14, 351–367.[CrossRef]
    [Google Scholar]
  234. Macreadie, I. G., Sewell, A. K. & Winge, D. R. ( 1994; ). Metal ion resistance and the role of metallothionein inyeast. In Metal Ions in Fungi, pp 279–310. Edited by G. Winkelmann &D. R. Winge. New York: Marcel Dekker.
  235. Mandal, S. K., Roy, A. & Banerjee, P. C. ( 2002; ). Iron leaching from china clay by fungal strains. Trans Indian Inst Metals 55, 1–7.
    [Google Scholar]
  236. Marshall, K. C. ( 1971; ). Sorption interactionsbetween soil particles and microorganisms. Soil Biochemistry, vol.2, pp. 409–445. Edited by A. D. McLaren & J. Skujins. New York:Marcel Dekker.
  237. Marshman, N. A. & Marshall, K. C. ( 1981a; ). Bacterial growth on proteins in the presence of clay minerals. Soil Biol Biochem 13, 127–134.[CrossRef]
    [Google Scholar]
  238. Marshman, N. A. & Marshall, K. C. ( 1981b; ). Some effects of montmorillonite on the growth of mixed microbial cultures. Soil Biol Biochem 13, 135–141.[CrossRef]
    [Google Scholar]
  239. Martino, E., Perotto, S., Parsons, R. & Gadd, G. M. ( 2003; ). Solubilization of insoluble inorganic zinc compoundsby ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biol Biochem 35, 133–141.[CrossRef]
    [Google Scholar]
  240. McLean, J. & Beveridge, T. J. ( 2001; ). Chromate reduction by a pseudomonad isolated from a site contaminatedwith chromated copper arsenate. Appl Environ Microbiol 67, 1076–1084.[CrossRef]
    [Google Scholar]
  241. McLean, J. S., Lee, J.-U. & Beveridge, T. J. ( 2002; ). Interactions of bacteria and environmental metals, fine-grainedmineral development, and bioremediation strategies. In Interactions BetweenSoil Particles and Microorganisms, pp. 228–261. Edited by P. M.Huang, J.-M. Bollag & N. Senesi. New York: Wiley.
  242. Meharg, A. A. ( 2003; ). The mechanisticbasis of interactions between mycorrhizal associations and toxic metal cations. Mycol Res 107, 1253–1265.[CrossRef]
    [Google Scholar]
  243. Meharg, A. A. & Cairney, J. W. G. ( 2000; ). Co-evolution of mycorrhizal symbionts and their hosts to metal-contaminatedenvironments. Adv Ecol Res 30, 69–112.
    [Google Scholar]
  244. Miyata, N., Tani, Y., Iwahori, K. & Soma, M. ( 2004; ). Enzymatic formation of manganese oxides by an Acremonium-like hyphomycete fungus, strain KR21-2. FEMS Microbiol Ecol 47, 101–109.[CrossRef]
    [Google Scholar]
  245. Miyata, N., Tani, Y., Maruo, K., Tsuno, H., Sakata, M. &Iwahori, K. ( 2006; ). Manganese(IV) oxideproduction by Acremonium sp. strain KR21-2 and extracellular Mn(II)oxidase activity. Appl Environ Microbiol 72, 6467–6473.[CrossRef]
    [Google Scholar]
  246. Miyata, N., Tani, Y., Sakata, M. & Iwahori, K. ( 2007; ). Microbial manganese oxide formation and interaction withtoxic metal ions. J Biosci Bioeng 104, 1–8.[CrossRef]
    [Google Scholar]
  247. Morley, G. F. & Gadd, G. M. ( 1995; ). Sorption of toxic metals by fungi and clay minerals. MycolRes 99, 1429–1438.
    [Google Scholar]
  248. Mossman, D. J., Reimer, T. & Durstling, H. ( 1999; ). Microbial processes in gold migration and deposition: modernanalogues to ancient deposits. Geosci Canada 26, 131–140.
    [Google Scholar]
  249. Mowll, J. L. & Gadd, G. M. ( 1984; ).Cadmium uptake by Aureobasidium pullulans. J Gen Microbiol 130, 279–284.
    [Google Scholar]
  250. Mulligan, C. N. & Galvez-Cloutier, R. ( 2003; ). Bioremediation of metal contamination. Environ MonitAssess 84, 45–60.
    [Google Scholar]
  251. Nica, D., Davis, J. L., Kirby, L., Zuo, G. & Roberts, D.J. ( 2000; ). Isolation and characterization of microorganismsinvolved in the biodeterioration of concrete in sewers. Int BiodeteriorBiodegrad 46, 61–68.
    [Google Scholar]
  252. Nies, D. H. ( 1992a; ). Resistance to cadmium,cobalt, zinc, and nickel in microbes. Plasmid 27, 17–28.[CrossRef]
    [Google Scholar]
  253. Nies, D. H. ( 1999; ). Microbial heavy-metalresistance. Appl Microbiol Biotechnol 51, 730–750.[CrossRef]
    [Google Scholar]
  254. Nies, D. H. ( 2003; ). Efflux-mediatedheavy metal resistance in prokaryotes. FEMS Microbiol Rev 27, 313–339.[CrossRef]
    [Google Scholar]
  255. Nies, D. H. & Silver, S. ( 1995; ).Ion efflux systems involved in bacterial metal resistances. J IndMicrobiol 14, 186–199.
    [Google Scholar]
  256. Olsson, P. A. & Wallander, H. ( 1998; ). Interactions between ectomycorrhizal fungi and the bacterial communityin soils amended with various primary minerals. FEMS MicrobiolEcol 27, 195–205.
    [Google Scholar]
  257. Oremland, R. & Stolz, J. ( 2000; ).Dissimilatory reduction of selenate and arsenate in nature. In EnvironmentalMicrobe–Metal Interactions, pp. 199–224. Edited by D. R.Lovley. Washington, DC: American Society for Microbiology.
  258. Oremland, R. S., Hollibaugh, J. T., Maest, A. S., Presser, T.S., Miller, L. G. & Culbertson, C. W. ( 1989; ).Selenate reduction to elemental selenium by anaerobic bacteria in sedimentsand culture: biogeochemical significance of a novel sulfate-independent respiration. Appl Environ Microbiol 55, 2333–2343.
    [Google Scholar]
  259. Osman, D. & Cavet, J. S. ( 2008; ).Copper homeostasis in bacteria. Adv Appl Microbiol 65, 217–247.
    [Google Scholar]
  260. Paez-Espino, D., Tamames, J., de Lorenzo, V. & Canovas,D. ( 2009; ). Microbial responses to environmental arsenic. Biometals 22, 117–130.[CrossRef]
    [Google Scholar]
  261. Perotto, S., Girlanda, M. & Martino, E. ( 2002; ). Ericoid mycorrhizal fungi: some new perspectives on old acquaintances. Plant Soil 244, 41–53.[CrossRef]
    [Google Scholar]
  262. Perry, R. S., Mcloughlin, N., Lynne, B. Y., Sephton, M. A.,Oliver, J. D., Perry, C. C., Campbell, K., Engel, M. H., Farmer, J. D. &other authors ( 2007; ). Defining biominerals and organominerals:direct and indirect indicators of life. Sediment Geol 201, 157–179.[CrossRef]
    [Google Scholar]
  263. Petkov, V., Ren, Y., Saratovsky, I., Pasten, P., Gurr, S. J.,Hayward, M. A., Poeppelmeier, K. R. & Gaillard, J. F. ( 2009; ). Atomic-scale structure of biogenic materials by total X-raydiffraction: a study of bacterial and fungal MnO x . ACS Nano 3, 441–445.[CrossRef]
    [Google Scholar]
  264. Phillips, E. J. P., Landa, E. R. & Lovley, D. R. ( 1995; ). Remediation of uranium contaminated soils with bicarbonateextraction and microbial U(VI) reduction. J Ind Microbiol 14, 203–207.[CrossRef]
    [Google Scholar]
  265. Posfai, M. & Dunin-Borkowski, R. E. ( 2009; ). Magnetic nanocrystals in organisms. Elements 5, 235–240.[CrossRef]
    [Google Scholar]
  266. Pumpel, T. & Paknikar, K. M. ( 2001; ). Bioremediation technologies for metal-containing wastewaters using metabolicallyactive microorganisms. Adv Appl Microbiol 48, 135–169.
    [Google Scholar]
  267. Purvis, O. W. ( 1996; ). Interactions oflichens with metals. Sci Prog 79, 283–309.
    [Google Scholar]
  268. Purvis, O. W. & Halls, C. ( 1996; ).A review of lichens in metal-enriched environments. Lichenologist 28, 571–601.[CrossRef]
    [Google Scholar]
  269. Purvis, O. W. & Pawlik-Skowronska, B. ( 2008; ). Lichens and metals. In Stress in Yeasts and FilamentousFungi, pp. 175–200. Amsterdam: Elsevier.
  270. Ranalli, G., Zanardini, E. & Sorlini, C. C. ( 2009; ). Biodeterioration – including cultural heritage. In Encyclopedia of Microbiology, 3rd edn, pp. 191–205. Edited by M.Schaechter. Amsterdam: Elsevier.
  271. Rawlings, D. E. ( 2002; ). Heavy metalmining using microbes. Annu Rev Microbiol 56, 65–91.[CrossRef]
    [Google Scholar]
  272. Rawlings, D. E., Dew, D. & du Plessis, C. ( 2003; ). Biomineralization of metal-containing ores and concentrates. Trends Biotechnol 21, 38–44.[CrossRef]
    [Google Scholar]
  273. Reith, F., Rogers, S. L., McPhail, D. C. & Webb, D. ( 2006; ). Biomineralization of gold: biofilms on bacterioformgold. Science 313, 233–236.[CrossRef]
    [Google Scholar]
  274. Reith, F., Lengke, M. F., Falconer, D., Craw, D. & Southam,G. ( 2007; ). The geomicrobiology of gold. ISME J 1, 567–584.[CrossRef]
    [Google Scholar]
  275. Reith, F., Etschmann, B., Grosse, C., Moors, H., Benotmane,M. A., Monsieurs, P., Grass, G., Doonan, C., Vogt, S. & other authors ( 2009; ). Mechanisms of gold biomineralization in thebacterium Cupriavidus metallidurans. Proc Natl Acad SciU S A 106, 17757–17762.
    [Google Scholar]
  276. Renninger, N., McMahon, K. D., Knopp, R., Nitsche, H., Clark,D. S. & Keasling, J. D. ( 2001; ). Uranyl precipitationby biomass from an enhanced biological phosphorus removal reactor. Biodegradation 12, 401–410.[CrossRef]
    [Google Scholar]
  277. Renninger, N., Knopp, R., Nitsche, H., Clark, D. S., Jay, D. &Keasling, J. D. ( 2004; ). Uranyl precipitation by Pseudomonas aeruginosa via controlled polyphosphate metabolism. Appl Environ Microbiol 70, 7404–7412.[CrossRef]
    [Google Scholar]
  278. Renshaw, J. C., Robson, G. D., Trinci, A. P. J., Wiebe, M. G.,Livens, F. R., Collison, D. & Taylor, R. J. ( 2002; ). Fungal siderophores: structures, functions and applications. Mycol Res 106, 1123–1142.[CrossRef]
    [Google Scholar]
  279. Ritz, K. & Young, I. M. ( 2004; ).Interaction between soil structure and fungi. Mycologist 18, 52–59.[CrossRef]
    [Google Scholar]
  280. Rodriguez Navarro, C., Sebastian, E. & Rodriguez-Gallego,M. ( 1997; ). An urban model for dolomite precipitation:authigenic dolomite on weathered building stones. Sediment Geol 109, 1–11.[CrossRef]
    [Google Scholar]
  281. Roeselers, G., van Loosdrecht, M. C. M. & Muyzer, G. ( 2007; ). Heterotrophic pioneers facilitate phototrophic biofilmdevelopment. Microb Ecol 54, 578–585.[CrossRef]
    [Google Scholar]
  282. Rogers, J. R. & Bennett, P. C. ( 2004; ). Mineral stimulation of subsurface microorganisms: release of limitingnutrients from silicates. Chem Geol 203, 91–108.[CrossRef]
    [Google Scholar]
  283. Rosen, B. P. ( 2002; ). Transport and detoxificationsystems for transition metals, heavy metals and metalloids in eukaryotic andprokaryotic microbes. Comp Biochem Physiol 133, 689–693.[CrossRef]
    [Google Scholar]
  284. Rosen, K., Zhong, W. L. & Martensson, A. ( 2005; ). Arbuscular mycorrhizal fungi mediated uptake of Cs-137 inleek and ryegrass. Sci Total Environ 338, 283–290.[CrossRef]
    [Google Scholar]
  285. Rosling, A., Lindahl, B. D., Taylor, A. F. S. & Finlay,R. D. ( 2004a; ). Mycelial growth and substrate acidificationof ectomycorrhizal fungi in response to different minerals. FEMSMicrobiol Ecol 47, 31–37.
    [Google Scholar]
  286. Rosling, A., Lindahl, B. D. & Finlay, R. D. ( 2004b; ). Carbon allocation to ectomycorrhizal roots and myceliumcolonising different mineral substrates. New Phytol 162, 795–802.[CrossRef]
    [Google Scholar]
  287. Rufyikiri, G., Huysmans, L., Wannijn, J., Van Hees, M., Leyval,C. & Jakobsen, I. ( 2004; ). Arbuscular mycorrhizalfungi can decrease the uptake of uranium by subterranean clover grown at highlevels of uranium in soil. Environ Pollut 130, 427–436.[CrossRef]
    [Google Scholar]
  288. Rugh, C. L., Wilde, H. D., Stack, N. M., Thompson, D. M., Summers,A. O. & Meagher, R. B. ( 1996; ). Mercuric ion reductionand resistance in transgenic Arabidopsis thaliana plants expressinga modified bacterial merA gene. Proc Natl Acad Sci U SA 93, 3182–3187.
    [Google Scholar]
  289. Rusin, P. A., Sharp, J. E., Oden, K. L., Arnold, R. G. &Sinclair, N. A. ( 1993; ). Isolation and physiology ofa manganese-reducing Bacillus polymyxa from an Oligocene silver-bearingore and sediment with reference to Precambrian biogeochemistry. Precambrian Res 61, 231–240.[CrossRef]
    [Google Scholar]
  290. Ruta, L., Paraschivescu, C., Matache, M., Avramescu, S. &Farcasanu, I. C. ( 2010; ). Removing heavy metals fromsynthetic effluents using “kamikaze” Saccharomyces cerevisiae cells. Appl Microbiol Biotechnol 85, 763–771.[CrossRef]
    [Google Scholar]
  291. Salt, D. E., Smith, R. D. & Raskin, I. ( 1998; ). Phytoremediation. Annu Rev Plant Physiol Plant MolBiol 49, 643–668.
    [Google Scholar]
  292. Sand, W. ( 1997; ). Microbial mechanismsof deterioration of inorganic substrates: a general mechanistic overview. Int Biodeter Biodeg 40, 183–190.[CrossRef]
    [Google Scholar]
  293. Santhiya, D. & Ting, Y. P. ( 2005; ).Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid. J Biotechnol 116, 171–184.[CrossRef]
    [Google Scholar]
  294. Saratovsky, I., Gurr, S. J. & Hayward, M. A. ( 2009; ). The structure of manganese oxide formed by the fungus Acremonium sp. strain KR21-2. Geochim Cosmochim Acta 73, 3291–3300.[CrossRef]
    [Google Scholar]
  295. Sauge-Merle, S., Cuine, S., Carrier, P., Lecomte-Pradines, C.,Luu, D.-T. & Peltier, G. ( 2003; ). Enhanced toxicmetal accumulation in engineered bacterial cells expressing Arabidopsisthaliana phytochelatin synthase. Appl Environ Microbiol 69, 490–494.[CrossRef]
    [Google Scholar]
  296. Sayer, J. A. & Gadd, G. M. ( 1997; ).Solubilization and transformation of insoluble metal compounds to insolublemetal oxalates by Aspergillus niger. Mycol Res 101, 653–661.[CrossRef]
    [Google Scholar]
  297. Sayer, J. A., Cotter-Howells, J. D., Watson, C., Hillier, S. &Gadd, G. M. ( 1999; ). Lead mineral transformation byfungi. Curr Biol 9, 691–694.[CrossRef]
    [Google Scholar]
  298. Scheerer, S., Ortega-Morales, O. & Gaylarde, C. ( 2009; ). Microbial deterioration of stone monuments: an updatedoverview. Adv Appl Microbiol 66, 97–139.
    [Google Scholar]
  299. Schneider, J. & Le Campion-Alsumard, T. ( 1999; ). Construction and destruction of carbonates by marine and freshwatercyanobacteria. Eur J Phycol 34, 417–426.[CrossRef]
    [Google Scholar]
  300. Schröder, I., Johnson, E. & de Vries, S. ( 2003; ). Microbial ferric iron reductases. FEMS MicrobiolRev 27, 427–447.
    [Google Scholar]
  301. Schutzendubel, A. & Polle, A. ( 2002; ). Plant responses to abiotic stresses: heavy metal-induced oxidative stressand protection by mycorrhization. J Exp Bot 53, 1351–1365.[CrossRef]
    [Google Scholar]
  302. Seaward, M. R. D. ( 2003; ). Lichens, agentsof monumental destruction. Microbiol Today 30, 110–112.
    [Google Scholar]
  303. Silver, S. & Phung, L. T. ( 1996; ).Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50, 753–789.[CrossRef]
    [Google Scholar]
  304. Silver, S. & Phung, L. T. ( 2009; ).Heavy metals, bacterial resistance. In Encyclopedia of Microbiology,pp. 220–227. Edited by M. Schaechter. Oxford: Elsevier.
  305. Smith, W. L. & Gadd, G. M. ( 2000; ).Reduction and precipitation of chromate by mixed culture sulphate-reducingbacterial biofilms. J Appl Microbiol 88, 983–991.[CrossRef]
    [Google Scholar]
  306. Smith, S. E. & Read, D. J. ( 1997; ). Mycorrhizal Symbiosis, 2nd edn. San Diego: Academic Press.
  307. Smits, M. ( 2006; ). Mineral tunnellingby fungi. In Fungi in Biogeochemical Cycles, pp. 311–327. Editedby G. M. Gadd. Cambridge: Cambridge University Press.
  308. Song, W. Y., Sohn, E. J., Martinoia, E., Lee, Y. J., Yang, Y.Y., Jasinski, M., Forestier, C., Hwang, I. & Lee, Y. ( 2003; ). Engineering tolerance and accumulation of lead and cadmium intransgenic plants. Nat Biotechnol 21, 914–919.[CrossRef]
    [Google Scholar]
  309. Southam, G., Lengke, M. F., Fairbrother, L. & Reith, F. ( 2009; ). The biogeochemistry of gold. Elements 5, 303–307.[CrossRef]
    [Google Scholar]
  310. Sparks, D. L. ( 2005; ). Toxic metals inthe environment: the role of surfaces. Elements 1, 193–196.[CrossRef]
    [Google Scholar]
  311. Sreekrishnan, T. R. & Tyagi, R. D. ( 1994; ). Heavy metal leaching from sewage sludges: a techno-economic evaluationof the process options. Environ Technol 15, 531–543.[CrossRef]
    [Google Scholar]
  312. Sterflinger, K. ( 2000; ). Fungi as geologicagents. Geomicrobiol J 17, 97–124.[CrossRef]
    [Google Scholar]
  313. Stolz, J. F. & Oremland, R. S. ( 1999; ). Bacterial respiration of arsenic and selenium. FEMS MicrobiolRev 23, 615–627.
    [Google Scholar]
  314. Stolz, J. F., Basu, P., Santini, J. M. & Oremland, R. S. ( 2006; ). Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60, 107–130.[CrossRef]
    [Google Scholar]
  315. Strasser, H., Burgstaller, W. & Schinner, F. ( 1994; ). High yield production of oxalic acid for metal leachingpurposes by Aspergillus niger. FEMS Microbiol Lett 119, 365–370.[CrossRef]
    [Google Scholar]
  316. Stumm, W. & Morgan, J. J. ( 1996; ). Aquatic Chemistry. Chemical Equilibria and Rates in Natural Waters. NewYork: Wiley.
  317. Suzuki, I. ( 2001; ). Microbial leachingof metals from sulfide minerals. Biotechnol Adv 19, 119–132.[CrossRef]
    [Google Scholar]
  318. Tamaki, S. & Frankenberger, W. T. ( 1992; ). Environmental biochemistry of arsenic. Rev Environ ContamToxicol 124, 79–110.
    [Google Scholar]
  319. Tazaki, K. ( 2006; ). Clays, microorganisms,and biomineralization. In Handbook of Clay Science, Developments in ClayScience, vol. 1, pp. 477–497. Edited by F. Bergaya, B. K. G. Theng &G. Lagaly. Amsterdam: Elsevier.
  320. Tebo, B. M. & Obraztsova, A. Y. ( 1998; ). Sulfate-reducing bacterium grows with Cr(VI), U(VI),Mn(IV), and Fe(III) as electron acceptors. FEMS Microbiol Lett 162, 193–198.[CrossRef]
    [Google Scholar]
  321. Tebo, B. M., Bargar, J. R., Clement, B. G., Dick, G. J., Murray,K. J., Parker, D., Verity, R. & Webb, S. M. ( 2004; ). Biogenic manganese oxides: properties and mechanisms of formation. Annu Rev Earth Planet Sci 32, 287–328.[CrossRef]
    [Google Scholar]
  322. Tebo, B. M., Johnson, H. A., McCarthy, J. K. & Templeton,A. S. ( 2005; ). Geomicrobiology of manganese(II)oxidation. Trends Microbiol 13, 421–438.[CrossRef]
    [Google Scholar]
  323. Thayer, J. S. ( 1989; ). Methylation: itsrole in the environmental mobility of heavy elements. Appl OrganometChem 3, 123–128.
    [Google Scholar]
  324. Theng, B. K. G. & Yuan, G. ( 2008; ).Nanoparticles in the soil environment. Elements 4, 395–399.[CrossRef]
    [Google Scholar]
  325. Thompson-Eagle, E. T. & Frankenberger, W. T. ( 1992; ). Bioremediation of soils contaminated with selenium. In Advances in Soil Science, pp. 261–309. Edited by R. Lal & B.A. Stewart. New York: Springer.
  326. Thompson-Eagle, E. T., Frankenberger, W. T. & Karlson, U. ( 1989; ). Volatilization of selenium by Alternariaalternata. Appl Environ Microbiol 55, 1406–1413.
    [Google Scholar]
  327. Tiano, P. ( 2002; ). Biodegradation ofcultural heritage: decay, mechanisms and control methods. Seminar article,New University of Lisbon, Department of Conservation and Restoration, 7–12January 2002 (http://www.arcchip.cz/w09/w09_tiano.pdf. )
  328. Tsai, S.-L., Singh, S. & Chen, W. ( 2009; ). Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Curr Opin Biotechnol 20, 659–667.[CrossRef]
    [Google Scholar]
  329. Tullio, M., Pierandrei, F., Salerno, A. & Rea, E. ( 2003; ). Tolerance to cadmium of vesicular arbuscular mycorrhizaespores isolated from a cadmium-polluted and unpolluted soil. BiolFertil Soils 37, 211–214.
    [Google Scholar]
  330. Uroz, S., Calvaruso, C., Turpault, M.-P. & Frey-Klett, P. ( 2009; ). Mineral weathering by bacteria: ecology,actors and mechanisms. Trends Microbiol 17, 378–387.[CrossRef]
    [Google Scholar]
  331. Urrutia, M. M. & Beveridge, T. J. ( 1994; ). Formation of fine-grained silicate minerals and metal precipitates bya bacterial cell surface (Bacillus subtilis) and implicationson global cycling of silicon. Chem Geol 116, 261–280.[CrossRef]
    [Google Scholar]
  332. Vachon, R. P. D., Tyagi, J., Auclair, C. & Wilkinson, K.J. ( 1994; ). Chemical and biological leaching of aluminiumfrom red mud. Environ Sci Technol 28, 26–30.[CrossRef]
    [Google Scholar]
  333. Valls, M. & de Lorenzo, V. ( 2002; ).Exploiting the genetic and biochemical capacities of bacteria for the remediationof heavy metal pollution. FEMS Microbiol Rev 26, 327–338.[CrossRef]
    [Google Scholar]
  334. Valls, M., Atrian, S., de Lorenzo, V. & Fernandez, L. A. ( 2000; ). Engineering a mouse metallothionein on thecell surface of Ralstonia eutropha CH34 for immobilization of heavymetals in soil. Nat Biotechnol 18, 661–665.[CrossRef]
    [Google Scholar]
  335. Van Breemen, N., Lundstrom, U. S. & Jongmans, A. G. ( 2000; ). Do plants drive podzolization via rock-eating mycorrhizalfungi? Geoderma 94, 163–171.[CrossRef]
    [Google Scholar]
  336. Van der Lelie, D., Schwitzguebel, J. P., Glass, D. J., Vangronsveld,J. & Baker, A. ( 2001; ). Assessing phytoremediation'sprogress in the United States and Europe. Environ Sci Technol 35, 446A–452A.[CrossRef]
    [Google Scholar]
  337. Van Ho, A., Ward, D. M. & Kaplan, J. ( 2002; ). Transition metal transport in yeast. Annu Rev Microbiol 56, 237–261.[CrossRef]
    [Google Scholar]
  338. Vaughan, D. J., Pattrick, R. A. D. & Wogelius, R. A. ( 2002; ). Minerals, metals and molecules: ore and environmentalmineralogy in the new millenium. Mineral Mag 66, 653–676.[CrossRef]
    [Google Scholar]
  339. Verrecchia, E. P. ( 2000; ). Fungi andsediments. In Microbial Sediments, pp. 69–75. Edited by R.E. Riding & S. M. Awramik. Berlin: Springer.
  340. Verrecchia, E. P., Dumont, J. L. & Rolko, K. E. ( 1990; ). Do fungi building limestones exist in semi-arid regions? Naturwissenschaften 77, 584–586.[CrossRef]
    [Google Scholar]
  341. Verrecchia, E. P., Braissant, O. & Cailleau, G. ( 2006; ). The oxalate–carbonate pathway in soil carbonstorage: the role of fungi and oxalotrophic bacteria. In Fungi in BiogeochemicalCycles, pp. 289–310. Edited by G. M. Gadd. Cambridge: CambridgeUniversity Press.
  342. Violante, A., Huang, P. M. & Gadd, G. M. (editors) ( 2008; ). Biophysico-chemical Processes of Heavy Metalsand Metalloids in Soil Environments. Chichester: Wiley.
  343. Volesky, B. ( 1990; ). Biosorptionof Heavy Metals. Boca Raton, FL: CRC Press.
  344. Walker, J. J. & Pace, N. R. ( 2007; ). Endolithic microbial ecosystems. Annu Rev Microbiol 61, 331–347.[CrossRef]
    [Google Scholar]
  345. Wall, J. D. & Krumholz, L. R. ( 2006; ). Uranium reduction. Annu Rev Microbiol 60, 149–166.[CrossRef]
    [Google Scholar]
  346. Wallander, H., Mahmood, S., Hagerberg, D., Johansson, L. &Pallon, J. ( 2003; ). Elemental composition of ectomycorrhizalmycelia identified by PCR-RFLP analysis and grown in contact with apatiteor wood ash in forest soil. FEMS Microbiol Ecol 44, 57–65.
    [Google Scholar]
  347. Wang, J. & Chen, C. ( 2009; ). Biosorbentsfor heavy metals removal and their future. Biotechnol Adv 27, 195–226.[CrossRef]
    [Google Scholar]
  348. Wang, C. L., Lum, A. M., Ozuna, S. C., Clark, D. S. & Keasling,J. D. ( 2001; ). Aerobic sulfide production and cadmiumprecipitation by Escherichia coli expressing the Treponema denticola cysteine desulfhydrase gene. Appl Microbiol Biotechnol 56, 425–430.[CrossRef]
    [Google Scholar]
  349. Warren, L. A. & Haack, E. A. ( 2001; ). Biogeochemical controls on metal behaviour in freshwater environments. Earth Sci Rev 54, 261–320.[CrossRef]
    [Google Scholar]
  350. Warscheid, T., Becker, T. W. & Resende, M. A. ( 1996; ). Biodeterioration of stone: a comparison of (sub-)tropicaland moderate climate zones. In Biodegradation and Biodeterioration inLatin America, pp. 63–64.Edited by C. C. Gaylarde, E. L. S. deSa & P. M. Gaylarde. Porto Alegre: Mircen/UNEP/UNESCO/ICRO-FEPAGRO/UFRGS.
  351. Watson, J. H. P., Ellwood, D. C., Deng, Q. X., Mikhalovsky,S., Hayter, C. E. & Evans, J. ( 1995; ). Heavy metaladsorption on bacterially-produced FeS. Min Eng 8, 1097–1108.[CrossRef]
    [Google Scholar]
  352. Watson, J. H. P., Cressey, B. A., Roberts, A. P., Ellwood, D.C., Charnock, J. M. & Soper, A. K. ( 2000; ). Structuraland magnetic studies on heavy-metal-adsorbing iron sulphide nanoparticlesproduced by sulphate-reducing bacteria. J Magn Magn Mater 214, 13–30.[CrossRef]
    [Google Scholar]
  353. Weaver, T. L. & Dugan, P. R. ( 1972; ). Enhancement of bacteria methane oxidation by clay minerals. Nature 237, 518 [CrossRef]
    [Google Scholar]
  354. Wengel, M., Kothe, E., Schmidt, C. M., Heide, K. & Gleixner,G. ( 2006; ). Degradation of organic matter from blackshales and charcoal by the wood-rotting fungus Schizophyllum communeand release of DOC and heavy metals in the aqueous phase. Sci TotalEnviron 367, 383–393.
    [Google Scholar]
  355. Wenzel, C. L., Ashford, A. E. & Summerell, B. A. ( 1994; ). Phosphate-solubilizing bacteria associated with proteoidroots of seedlings of warratah (Telopea speciosissima (Sm.)R. Br.). New Phytol 128, 487–496.[CrossRef]
    [Google Scholar]
  356. White, C. & Gadd, G. M. ( 1998; ).Accumulation and effects of cadmium on sulphate-reducing bacterial biofilms. Microbiology 144, 1407–1415.[CrossRef]
    [Google Scholar]
  357. White, C. & Gadd, G. M. ( 2000; ).Copper accumulation by sulphate-reducing bacterial biofilms and effects ongrowth. FEMS Microbiol Lett 183, 313–318.[CrossRef]
    [Google Scholar]
  358. White, C., Sayer, J. A. & Gadd, G. M. ( 1997; ). Microbial solubilization and immobilization of toxic metals:key biogeochemical processes for treatment of contamination. FEMSMicrobiol Rev 20, 503–516.
    [Google Scholar]
  359. White, C., Sharman, A. K. & Gadd, G. M. ( 1998; ). An integrated microbial process for the bioremediation of soilcontaminated with toxic metals. Nat Biotechnol 16, 572–575.[CrossRef]
    [Google Scholar]
  360. White, C., Dennis, J. S. & Gadd, G. M. ( 2003; ). A mathematical process model for cadmium precipitation by sulphate-reducingbacterial biofilms. Biodegradation 14, 139–151.[CrossRef]
    [Google Scholar]
  361. Whitelaw, M. A., Harden, T. J. & Helyar, K. R. ( 1999; ). Phosphate solubilization in solution culture by the soilfungus Penicillium radicum. Soil Biol Biochem 31, 655–665.[CrossRef]
    [Google Scholar]
  362. Wright, J. S. ( 2002; ). Geomorphologyand stone conservation: sandstone decay in Stoke-on-Trent. StructSurv 20, 50–61.
    [Google Scholar]
  363. Yee, N. & Kobayashi, D. Y. ( 2008; ).Molecular genetics of selenate reduction by Enterobacter cloacaeSLD1a-1. Adv Appl Microbiol 64, 107–123.
    [Google Scholar]
  364. Yong, P., Mikheenko, I. P., Deplanche, K., Sargent, F. &Macaskie, L. E. ( 2009; ). Biorecovery of precious metalsfrom wastes and conversion into fuel cell catalyst for electricity production. Adv Materials Res 71–73, 729–732.
    [Google Scholar]
  365. Zhdanova, N. N., Zakharchenko, V. A., Vember, V. V. & Nakonechnaya,L. T. ( 2000; ). Fungi from Chernobyl: mycobiota of theinner regions of the containment structures of the damaged nuclear reactor. Mycol Res 104, 1421–1426.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.037143-0
Loading
/content/journal/micro/10.1099/mic.0.037143-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error