1887

Abstract

In , the serine-threonine protein kinase activity of Dbf2p is required for tolerance to the weak organic acid sorbic acid. Here we show that Dbf2p is required for normal phosphorylation of the vacuolar H-ATPase (V-ATPase) A and B subunits Vma1p and Vma2p. Loss of V-ATPase activity due to bafilomycin treatment or deletion of either or resulted in sorbic acid hypersensitivity and impaired vacuolar acidification, phenotypes also observed in both a kinase-inactive mutant and cells completely lacking (Δ). Crucially, is a multicopy suppressor of both the sorbic acid-sensitive phenotype and the impaired vacuolar-acidification defect of Δ cells, confirming a functional interaction between Dbf2p and Vma2p. The yeast V-ATPase is therefore involved in mediating sorbic acid stress tolerance, and we have shown a novel and unexpected role for the cell cycle-regulated protein kinase Dbf2p in promoting V-ATPase function.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/010298-0
2007-12-01
2020-07-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/12/4016.html?itemId=/content/journal/micro/10.1099/mic.0.2007/010298-0&mimeType=html&fmt=ahah

References

  1. Anraku Y., Umemoto N., Hirata R., Wada Y.. 1989; Structure and function of the yeast vacuolar membrane proton ATPase. J Bioenerg Biomembr21:589–603
    [Google Scholar]
  2. Anraku Y., Umemoto N., Hirata R., Ohya Y.. 1992; Genetic and cell biological aspects of the yeast vacuolar H+-ATPase. J Bioenerg Biomembr24:395–405
    [Google Scholar]
  3. Arata Y., Nishi T., Kawasaki-Nishi S., Shao E., Wilkens S., Forgac M.. 2002; Structure, subunit function and regulation of the coated vesicle and yeast vacuolar H+-ATPases. Biochim Biophys Acta 1555;71–74
    [Google Scholar]
  4. Bowman E. J., Graham L. A., Stevens T. H., Bowman B. J.. 2004; The bafilomycin/concanamycin binding site in subunit C of the V-ATPases from Neurospora crassa and Saccharomyces cerevisiae . J Biol Chem279:33131–33138
    [Google Scholar]
  5. Collart M. A.. 2003; Global control of gene expression in yeast by the CCR4-NOT complex. Gene313:1–16
    [Google Scholar]
  6. de Nobel H., Lawrie L., Brul S., Klis F., Davis M., Alloush H., Coote P.. 2001; Parallel and comparative analysis of the proteome and transcriptome of sorbic acid-stressed Saccharomyces cerevisiae . Yeast18:1413–1428
    [Google Scholar]
  7. Drose S., Altendorf K.. 1997; Bafilomycins and concanamycins as inhibitors of V-ATPases and P-ATPases. J Exp Biol200:1–8
    [Google Scholar]
  8. Fernandes A. R., Durao P. J., Santos P. M., Sa-Correia I.. 2003; Activation and significance of vacuolar H+-ATPase in Saccharomyces cerevisiae adaptation and resistance to the herbicide 2,4-dichlorophenoxyacetic acid. Biochem Biophys Res Commun312:1317–1324
    [Google Scholar]
  9. Forgac M.. 1999; Structure and properties of the vacuolar H+-ATPases. J Biol Chem274:12951–12954
    [Google Scholar]
  10. Guy G. R., Philip R., Tan Y. H.. 1994; Analysis of cellular phosphoproteins by two-dimensional gel electrophoresis: applications for cell signaling in normal and cancer cells. Electrophoresis15:417–440
    [Google Scholar]
  11. Ho Y., Gruhler A., Heilbut A., Bader G. D., Moore L., Adams S. L., Millar A., Taylor P., Bennett K.. other authors 2002; Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature415:180–183
    [Google Scholar]
  12. Holyoak C. D., Bracey D., Piper P. W., Kuchler K., Coote P. J.. 1999; The Saccharomyces cerevisiae weak-acid-inducible ABC transporter Pdr12 transports fluorescein and preservative anions from the cytosol by an energy-dependent mechanism. J Bacteriol181:4644–4652
    [Google Scholar]
  13. Kaiser C., Michaelis S., Mitchell A.. 1994; Methods in Yeast Genetics: a Cold Spring Harbor Laboratory Course Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  14. Kane P. M., Kuehn M. C., Howald-Stevenson I., Stevens T. H.. 1992; Assembly and targeting of peripheral and integral membrane subunits of the yeast vacuolar H+-ATPase. J Biol Chem267:447–454
    [Google Scholar]
  15. Karet F. E., Finberg K. E., Nelson R. D., Nayir A., Mocan H., Sanjad S. A., Rodriguez-Soriano J., Santos F., Cremers C. W.. other authors 1999; Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. Nat Genet21:84–90
    [Google Scholar]
  16. Kren A., Mamnun Y. M., Bauer B. E., Schüller C., Wolfger H., Hatzixanthis K., Mollapour M., Gregori C., Piper P., Kuchler K.. 2003; War1p, a novel transcription factor controlling weak acid stress response in yeast. Mol Cell Biol23:1775–1785
    [Google Scholar]
  17. Lawrence C. L., Botting C. H., Antrobus R., Coote P. J.. 2004; Evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast: regulating adaptation to citric acid stress. Mol Cell Biol24:3307–3323
    [Google Scholar]
  18. Lee J. H., Van Montagu M., Verbruggen N.. 1999; A highly conserved kinase is an essential component for stress tolerance in yeast and plant cells. Proc Natl Acad Sci U S A96:5873–5877
    [Google Scholar]
  19. Lenssen E., Oberholzer U., Labarre J., De Virgilio C., Collart M. A.. 2002; Saccharomyces cerevisiae Ccr4-not complex contributes to the control of Msn2p-dependent transcription by the Ras/cAMP pathway. Mol Microbiol43:1023–1037
    [Google Scholar]
  20. Liu Q., Kane P. M., Newman P. R., Forgac M.. 1996; Site-directed mutagenesis of the yeast V-ATPase B subunit (Vma2p. J Biol Chem271:2018–2022
    [Google Scholar]
  21. Liu H. Y., Toyn J. H., Chiang Y. C., Draper M. P., Johnston L. H., Denis C. L.. 1997a; DBF2, a cell cycle-regulated protein kinase, is physically and functionally associated with the CCR4 transcriptional regulatory complex. EMBO J16:5289–5298
    [Google Scholar]
  22. Liu Q., Leng X. H., Newman P. R., Vasilyeva E., Kane P. M., Forgac M.. 1997b; Site-directed mutagenesis of the yeast V-ATPase A subunit. J Biol Chem272:11750–11756
    [Google Scholar]
  23. Longtine M. S., McKenzie A. III, Demarini D. J., Shah N. G., Wach A., Brachat A., Philippsen P., Pringle J. R.. 1998; Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae . Yeast14:953–961
    [Google Scholar]
  24. Mah A. S., Jang J., Deshaies R. J.. 2001; Protein kinase Cdc15 activates the Dbf2-Mob1 kinase complex. Proc Natl Acad Sci U S A98:7325–7330
    [Google Scholar]
  25. Mah A. S., Elia A. E., Devgan G., Ptacek J., Schutkowski M., Snyder M., Yaffe M. B., Deshaies R. J.. 2005; Substrate specificity analysis of protein kinase complex Dbf2-Mob1 by peptide library and proteome array screening. BMC Biochem6:22
    [Google Scholar]
  26. Makrantoni V., Coote P.. 2003; Genomic analysis of the regulation of sorbic acid-inducible protein expression in spoilage yeast. Yeast20:S184
    [Google Scholar]
  27. Makrantoni V., Antrobus R., Botting C. H., Coote P. J.. 2005; Rapid enrichment and analysis of yeast phosphoproteins using affinity chromatography, 2D-PAGE and peptide mass fingerprinting. Yeast22:401–414
    [Google Scholar]
  28. Manolson M. F., Wu B., Proteau D., Taillon B. E., Roberts B. T., Hoyt M. A., Jones E. W.. 1994; STV1 gene encodes functional homologue of 95-kDa yeast vacuolar H+-ATPase subunit Vph1p. J Biol Chem269:14064–14074
    [Google Scholar]
  29. Mollapour M., Fong D., Balakrishnan K., Harris N., Thompson S., Schuller C., Kuchler K., Piper P. W.. 2004; Screening the yeast deletant mutant collection for hypersensitivity and hyper-resistance to sorbate, a weak organic acid food preservative. Yeast21:927–946
    [Google Scholar]
  30. Morano K. A., Klionsky D. J.. 1994; Differential effects of compartment deacidification on the targeting of membrane and soluble proteins to the vacuole in yeast. J Cell Sci107:2813–2824
    [Google Scholar]
  31. Nishi T., Forgac M.. 2002; The vacuolar H+-ATPases – nature's most versatile proton pumps. Nat Rev Mol Cell Biol3:94–103
    [Google Scholar]
  32. Parsons A. B., Brost R. L., Ding H., Li Z., Zhang C., Sheikh B., Brown G. W., Kane P. M., Hughes T. R., Boone C.. 2004; Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat Biotechnol22:62–69
    [Google Scholar]
  33. Perzov N., Nelson H., Nelson N.. 2000; Altered distribution of the yeast plasma membrane H+-ATPase as a feature of vacuolar H+-ATPase null mutants. J Biol Chem275:40088–40095
    [Google Scholar]
  34. Piper P., Mahe Y., Thompson S., Pandjaitan R., Holyoak C., Egner R., Muhlbauer M., Coote P., Kuchler K.. 1998; The Pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast. EMBO J17:4257–4265
    [Google Scholar]
  35. Ptacek J., Devgan G., Michaud G., Zhu H., Zhu X., Fasolo J., Guo H., Jona G., Breitkreutz A.. other authors 2005; Global analysis of protein phosphorylation in yeast. Nature438:679–684
    [Google Scholar]
  36. Roberts C. J., Raymond C. K., Yamashiro C. T., Stevens T. H.. 1991; Methods for studying the yeast vacuole. Methods Enzymol194:644–661
    [Google Scholar]
  37. Sambrook J., Russell D.. 2001; Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  38. Schuller C., Mamnun Y. M., Mollapour M., Krapf G., Schuster M., Bauer B. E., Piper P. W., Kuchler K.. 2004; Global phenotypic analysis and transcriptional profiling defines the weak acid stress response regulon in Saccharomyces cerevisiae . Mol Biol Cell15:706–720
    [Google Scholar]
  39. Sheff M. A., Thorn K. S.. 2004; Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae . Yeast21:661–670
    [Google Scholar]
  40. Sikorski R. S., Hieter P.. 1989; A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae . Genetics122:19–27
    [Google Scholar]
  41. Tenreiro S., Rosa P. C., Viegas C. A., Sa-Correia I.. 2000; Expression of the AZR1 gene (ORF YGR224w), encoding a plasma membrane transporter of the major facilitator superfamily, is required for adaptation to acetic acid and resistance to azoles in Saccharomyces cerevisiae . Yeast16:1469–1481
    [Google Scholar]
  42. Tenreiro S., Nunes P. A., Viegas C. A., Neves M. S., Teixeira M. C., Cabral M. G., Sa-Correia I.. 2002; AQR1 gene (ORF YNL065w) encodes a plasma membrane transporter of the major facilitator superfamily that confers resistance to short-chain monocarboxylic acids and quinidine in Saccharomyces cerevisiae . Biochem Biophys Res Commun292:741–748
    [Google Scholar]
  43. Tomashek J. J., Graham L. A., Hutchins M. U., Stevens T. H., Klionsky D. J.. 1997; V1-situated stalk subunits of the yeast vacuolar proton-translocating ATPase. J Biol Chem272:26787–26793
    [Google Scholar]
  44. Toyn J. H., Johnston L. H.. 1994; The Dbf2 and Dbf20 protein kinases of budding yeast are activated after the metaphase to anaphase cell cycle transition. EMBO J13:1103–1113
    [Google Scholar]
  45. Toyn J. H., Araki H., Sugino A., Johnston L. H.. 1991; The cell-cycle-regulated budding yeast gene DBF2 , encoding a putative protein kinase, has a homologue that is not under cell-cycle control. Gene104:63–70
    [Google Scholar]
  46. Umemoto N., Yoshihisa T., Hirata R., Anraku Y.. 1990; Roles of the VMA3 gene product, subunit C of the vacuolar membrane H+-ATPase on vacuolar acidification and protein transport. A study with VMA3 -disrupted mutants of Saccharomyces cerevisiae . J Biol Chem265:18447–18453
    [Google Scholar]
  47. Vasilyeva E., Forgac M.. 1996; 3′- O -(4-Benzoyl)benzoyladenosine 5′-triphosphate inhibits activity of the vacuolar H+-ATPase from bovine brain clathrin-coated vesicles by modification of a rapidly exchangeable, noncatalytic nucleotide binding site on the B subunit. J Biol Chem271:12775–12782
    [Google Scholar]
  48. Weisman L. S., Bacallao R., Wickner W.. 1987; Multiple methods of visualizing the yeast vacuole permit evaluation of its morphology and inheritance during the cell cycle. J Cell Biol105:1539–1547
    [Google Scholar]
  49. Wilson W. A., Wang Z., Roach P. J.. 2002; Systematic identification of the genes affecting glycogen storage in the yeast Saccharomyces cerevisiae : implication of the vacuole as a determinant of glycogen level. Mol Cell Proteomics1:232–242
    [Google Scholar]
  50. Yeong F. M., Lim H. H., Surana U.. 2002; MEN, destruction and separation: mechanistic links between mitotic exit and cytokinesis in budding yeast. Bioessays24:659–666
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/010298-0
Loading
/content/journal/micro/10.1099/mic.0.2007/010298-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error