1887

Abstract

In , the serine-threonine protein kinase activity of Dbf2p is required for tolerance to the weak organic acid sorbic acid. Here we show that Dbf2p is required for normal phosphorylation of the vacuolar H-ATPase (V-ATPase) A and B subunits Vma1p and Vma2p. Loss of V-ATPase activity due to bafilomycin treatment or deletion of either or resulted in sorbic acid hypersensitivity and impaired vacuolar acidification, phenotypes also observed in both a kinase-inactive mutant and cells completely lacking (Δ). Crucially, is a multicopy suppressor of both the sorbic acid-sensitive phenotype and the impaired vacuolar-acidification defect of Δ cells, confirming a functional interaction between Dbf2p and Vma2p. The yeast V-ATPase is therefore involved in mediating sorbic acid stress tolerance, and we have shown a novel and unexpected role for the cell cycle-regulated protein kinase Dbf2p in promoting V-ATPase function.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/010298-0
2007-12-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/12/4016.html?itemId=/content/journal/micro/10.1099/mic.0.2007/010298-0&mimeType=html&fmt=ahah

References

  1. Anraku, Y., Umemoto, N., Hirata, R. & Wada, Y. ( 1989; ). Structure and function of the yeast vacuolar membrane proton ATPase. J Bioenerg Biomembr 21, 589–603.[CrossRef]
    [Google Scholar]
  2. Anraku, Y., Umemoto, N., Hirata, R. & Ohya, Y. ( 1992; ). Genetic and cell biological aspects of the yeast vacuolar H+-ATPase. J Bioenerg Biomembr 24, 395–405.[CrossRef]
    [Google Scholar]
  3. Arata, Y., Nishi, T., Kawasaki-Nishi, S., Shao, E., Wilkens, S. & Forgac, M. ( 2002; ). Structure, subunit function and regulation of the coated vesicle and yeast vacuolar H+-ATPases. Biochim Biophys Acta 1555, 71–74.[CrossRef]
    [Google Scholar]
  4. Bowman, E. J., Graham, L. A., Stevens, T. H. & Bowman, B. J. ( 2004; ). The bafilomycin/concanamycin binding site in subunit C of the V-ATPases from Neurospora crassa and Saccharomyces cerevisiae. J Biol Chem 279, 33131–33138.[CrossRef]
    [Google Scholar]
  5. Collart, M. A. ( 2003; ). Global control of gene expression in yeast by the CCR4-NOT complex. Gene 313, 1–16.[CrossRef]
    [Google Scholar]
  6. de Nobel, H., Lawrie, L., Brul, S., Klis, F., Davis, M., Alloush, H. & Coote, P. ( 2001; ). Parallel and comparative analysis of the proteome and transcriptome of sorbic acid-stressed Saccharomyces cerevisiae. Yeast 18, 1413–1428.[CrossRef]
    [Google Scholar]
  7. Drose, S. & Altendorf, K. ( 1997; ). Bafilomycins and concanamycins as inhibitors of V-ATPases and P-ATPases. J Exp Biol 200, 1–8.
    [Google Scholar]
  8. Fernandes, A. R., Durao, P. J., Santos, P. M. & Sa-Correia, I. ( 2003; ). Activation and significance of vacuolar H+-ATPase in Saccharomyces cerevisiae adaptation and resistance to the herbicide 2,4-dichlorophenoxyacetic acid. Biochem Biophys Res Commun 312, 1317–1324.[CrossRef]
    [Google Scholar]
  9. Forgac, M. ( 1999; ). Structure and properties of the vacuolar H+-ATPases. J Biol Chem 274, 12951–12954.[CrossRef]
    [Google Scholar]
  10. Guy, G. R., Philip, R. & Tan, Y. H. ( 1994; ). Analysis of cellular phosphoproteins by two-dimensional gel electrophoresis: applications for cell signaling in normal and cancer cells. Electrophoresis 15, 417–440.[CrossRef]
    [Google Scholar]
  11. Ho, Y., Gruhler, A., Heilbut, A., Bader, G. D., Moore, L., Adams, S. L., Millar, A., Taylor, P., Bennett, K. & other authors ( 2002; ). Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183.[CrossRef]
    [Google Scholar]
  12. Holyoak, C. D., Bracey, D., Piper, P. W., Kuchler, K. & Coote, P. J. ( 1999; ). The Saccharomyces cerevisiae weak-acid-inducible ABC transporter Pdr12 transports fluorescein and preservative anions from the cytosol by an energy-dependent mechanism. J Bacteriol 181, 4644–4652.
    [Google Scholar]
  13. Kaiser, C., Michaelis, S. & Mitchell, A. ( 1994; ). Methods in Yeast Genetics: a Cold Spring Harbor Laboratory Course Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  14. Kane, P. M., Kuehn, M. C., Howald-Stevenson, I. & Stevens, T. H. ( 1992; ). Assembly and targeting of peripheral and integral membrane subunits of the yeast vacuolar H+-ATPase. J Biol Chem 267, 447–454.
    [Google Scholar]
  15. Karet, F. E., Finberg, K. E., Nelson, R. D., Nayir, A., Mocan, H., Sanjad, S. A., Rodriguez-Soriano, J., Santos, F., Cremers, C. W. & other authors ( 1999; ). Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. Nat Genet 21, 84–90.[CrossRef]
    [Google Scholar]
  16. Kren, A., Mamnun, Y. M., Bauer, B. E., Schüller, C., Wolfger, H., Hatzixanthis, K., Mollapour, M., Gregori, C., Piper, P. & Kuchler, K. ( 2003; ). War1p, a novel transcription factor controlling weak acid stress response in yeast. Mol Cell Biol 23, 1775–1785.[CrossRef]
    [Google Scholar]
  17. Lawrence, C. L., Botting, C. H., Antrobus, R. & Coote, P. J. ( 2004; ). Evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast: regulating adaptation to citric acid stress. Mol Cell Biol 24, 3307–3323.[CrossRef]
    [Google Scholar]
  18. Lee, J. H., Van Montagu, M. & Verbruggen, N. ( 1999; ). A highly conserved kinase is an essential component for stress tolerance in yeast and plant cells. Proc Natl Acad Sci U S A 96, 5873–5877.[CrossRef]
    [Google Scholar]
  19. Lenssen, E., Oberholzer, U., Labarre, J., De Virgilio, C. & Collart, M. A. ( 2002; ). Saccharomyces cerevisiae Ccr4-not complex contributes to the control of Msn2p-dependent transcription by the Ras/cAMP pathway. Mol Microbiol 43, 1023–1037.[CrossRef]
    [Google Scholar]
  20. Liu, Q., Kane, P. M., Newman, P. R. & Forgac, M. ( 1996; ). Site-directed mutagenesis of the yeast V-ATPase B subunit (Vma2p). J Biol Chem 271, 2018–2022.[CrossRef]
    [Google Scholar]
  21. Liu, H. Y., Toyn, J. H., Chiang, Y. C., Draper, M. P., Johnston, L. H. & Denis, C. L. ( 1997a; ). DBF2, a cell cycle-regulated protein kinase, is physically and functionally associated with the CCR4 transcriptional regulatory complex. EMBO J 16, 5289–5298.[CrossRef]
    [Google Scholar]
  22. Liu, Q., Leng, X. H., Newman, P. R., Vasilyeva, E., Kane, P. M. & Forgac, M. ( 1997b; ). Site-directed mutagenesis of the yeast V-ATPase A subunit. J Biol Chem 272, 11750–11756.[CrossRef]
    [Google Scholar]
  23. Longtine, M. S., McKenzie, A., III, Demarini, D. J., Shah, N. G., Wach, A., Brachat, A., Philippsen, P. & Pringle, J. R. ( 1998; ). Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961.[CrossRef]
    [Google Scholar]
  24. Mah, A. S., Jang, J. & Deshaies, R. J. ( 2001; ). Protein kinase Cdc15 activates the Dbf2-Mob1 kinase complex. Proc Natl Acad Sci U S A 98, 7325–7330.[CrossRef]
    [Google Scholar]
  25. Mah, A. S., Elia, A. E., Devgan, G., Ptacek, J., Schutkowski, M., Snyder, M., Yaffe, M. B. & Deshaies, R. J. ( 2005; ). Substrate specificity analysis of protein kinase complex Dbf2-Mob1 by peptide library and proteome array screening. BMC Biochem 6, 22 [CrossRef]
    [Google Scholar]
  26. Makrantoni, V. & Coote, P. ( 2003; ). Genomic analysis of the regulation of sorbic acid-inducible protein expression in spoilage yeast. Yeast 20, S184
    [Google Scholar]
  27. Makrantoni, V., Antrobus, R., Botting, C. H. & Coote, P. J. ( 2005; ). Rapid enrichment and analysis of yeast phosphoproteins using affinity chromatography, 2D-PAGE and peptide mass fingerprinting. Yeast 22, 401–414.[CrossRef]
    [Google Scholar]
  28. Manolson, M. F., Wu, B., Proteau, D., Taillon, B. E., Roberts, B. T., Hoyt, M. A. & Jones, E. W. ( 1994; ). STV1 gene encodes functional homologue of 95-kDa yeast vacuolar H+-ATPase subunit Vph1p. J Biol Chem 269, 14064–14074.
    [Google Scholar]
  29. Mollapour, M., Fong, D., Balakrishnan, K., Harris, N., Thompson, S., Schuller, C., Kuchler, K. & Piper, P. W. ( 2004; ). Screening the yeast deletant mutant collection for hypersensitivity and hyper-resistance to sorbate, a weak organic acid food preservative. Yeast 21, 927–946.[CrossRef]
    [Google Scholar]
  30. Morano, K. A. & Klionsky, D. J. ( 1994; ). Differential effects of compartment deacidification on the targeting of membrane and soluble proteins to the vacuole in yeast. J Cell Sci 107, 2813–2824.
    [Google Scholar]
  31. Nishi, T. & Forgac, M. ( 2002; ). The vacuolar H+-ATPases – nature's most versatile proton pumps. Nat Rev Mol Cell Biol 3, 94–103.[CrossRef]
    [Google Scholar]
  32. Parsons, A. B., Brost, R. L., Ding, H., Li, Z., Zhang, C., Sheikh, B., Brown, G. W., Kane, P. M., Hughes, T. R. & Boone, C. ( 2004; ). Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat Biotechnol 22, 62–69.[CrossRef]
    [Google Scholar]
  33. Perzov, N., Nelson, H. & Nelson, N. ( 2000; ). Altered distribution of the yeast plasma membrane H+-ATPase as a feature of vacuolar H+-ATPase null mutants. J Biol Chem 275, 40088–40095.[CrossRef]
    [Google Scholar]
  34. Piper, P., Mahe, Y., Thompson, S., Pandjaitan, R., Holyoak, C., Egner, R., Muhlbauer, M., Coote, P. & Kuchler, K. ( 1998; ). The Pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast. EMBO J 17, 4257–4265.[CrossRef]
    [Google Scholar]
  35. Ptacek, J., Devgan, G., Michaud, G., Zhu, H., Zhu, X., Fasolo, J., Guo, H., Jona, G., Breitkreutz, A. & other authors ( 2005; ). Global analysis of protein phosphorylation in yeast. Nature 438, 679–684.[CrossRef]
    [Google Scholar]
  36. Roberts, C. J., Raymond, C. K., Yamashiro, C. T. & Stevens, T. H. ( 1991; ). Methods for studying the yeast vacuole. Methods Enzymol 194, 644–661.
    [Google Scholar]
  37. Sambrook, J. & Russell, D. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  38. Schuller, C., Mamnun, Y. M., Mollapour, M., Krapf, G., Schuster, M., Bauer, B. E., Piper, P. W. & Kuchler, K. ( 2004; ). Global phenotypic analysis and transcriptional profiling defines the weak acid stress response regulon in Saccharomyces cerevisiae. Mol Biol Cell 15, 706–720.
    [Google Scholar]
  39. Sheff, M. A. & Thorn, K. S. ( 2004; ). Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 21, 661–670.[CrossRef]
    [Google Scholar]
  40. Sikorski, R. S. & Hieter, P. ( 1989; ). A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27.
    [Google Scholar]
  41. Tenreiro, S., Rosa, P. C., Viegas, C. A. & Sa-Correia, I. ( 2000; ). Expression of the AZR1 gene (ORF YGR224w), encoding a plasma membrane transporter of the major facilitator superfamily, is required for adaptation to acetic acid and resistance to azoles in Saccharomyces cerevisiae. Yeast 16, 1469–1481.[CrossRef]
    [Google Scholar]
  42. Tenreiro, S., Nunes, P. A., Viegas, C. A., Neves, M. S., Teixeira, M. C., Cabral, M. G. & Sa-Correia, I. ( 2002; ). AQR1 gene (ORF YNL065w) encodes a plasma membrane transporter of the major facilitator superfamily that confers resistance to short-chain monocarboxylic acids and quinidine in Saccharomyces cerevisiae. Biochem Biophys Res Commun 292, 741–748.[CrossRef]
    [Google Scholar]
  43. Tomashek, J. J., Graham, L. A., Hutchins, M. U., Stevens, T. H. & Klionsky, D. J. ( 1997; ). V1-situated stalk subunits of the yeast vacuolar proton-translocating ATPase. J Biol Chem 272, 26787–26793.[CrossRef]
    [Google Scholar]
  44. Toyn, J. H. & Johnston, L. H. ( 1994; ). The Dbf2 and Dbf20 protein kinases of budding yeast are activated after the metaphase to anaphase cell cycle transition. EMBO J 13, 1103–1113.
    [Google Scholar]
  45. Toyn, J. H., Araki, H., Sugino, A. & Johnston, L. H. ( 1991; ). The cell-cycle-regulated budding yeast gene DBF2, encoding a putative protein kinase, has a homologue that is not under cell-cycle control. Gene 104, 63–70.[CrossRef]
    [Google Scholar]
  46. Umemoto, N., Yoshihisa, T., Hirata, R. & Anraku, Y. ( 1990; ). Roles of the VMA3 gene product, subunit C of the vacuolar membrane H+-ATPase on vacuolar acidification and protein transport. A study with VMA3-disrupted mutants of Saccharomyces cerevisiae. J Biol Chem 265, 18447–18453.
    [Google Scholar]
  47. Vasilyeva, E. & Forgac, M. ( 1996; ). 3′-O-(4-Benzoyl)benzoyladenosine 5′-triphosphate inhibits activity of the vacuolar H+-ATPase from bovine brain clathrin-coated vesicles by modification of a rapidly exchangeable, noncatalytic nucleotide binding site on the B subunit. J Biol Chem 271, 12775–12782.[CrossRef]
    [Google Scholar]
  48. Weisman, L. S., Bacallao, R. & Wickner, W. ( 1987; ). Multiple methods of visualizing the yeast vacuole permit evaluation of its morphology and inheritance during the cell cycle. J Cell Biol 105, 1539–1547.[CrossRef]
    [Google Scholar]
  49. Wilson, W. A., Wang, Z. & Roach, P. J. ( 2002; ). Systematic identification of the genes affecting glycogen storage in the yeast Saccharomyces cerevisiae: implication of the vacuole as a determinant of glycogen level. Mol Cell Proteomics 1, 232–242.[CrossRef]
    [Google Scholar]
  50. Yeong, F. M., Lim, H. H. & Surana, U. ( 2002; ). MEN, destruction and separation: mechanistic links between mitotic exit and cytokinesis in budding yeast. Bioessays 24, 659–666.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/010298-0
Loading
/content/journal/micro/10.1099/mic.0.2007/010298-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error