- Volume 73, Issue 8, 2023
Volume 73, Issue 8, 2023
- Notification Lists
-
- New Taxa
-
- Actinomycetota
-
-
Nocardia australiensis sp. nov. and Nocardia spumae sp. nov., isolated from sea foam in Queensland, Australia
Strains USC-21046T and USC-21048T were isolated from foaming coastal marine waters on the Sunshine Coast, Queensland, Australia. Both strains displayed growth and morphological characteristics typical for members belonging to the genus Nocardia . The major polar lipids were diphosphatidylglycerol and phosphatidylethanolamine, and the major fatty acids were C16 : 0, C18 : 1 ω9c, C18 : 0 and C18 : 0 10-methyl. The mycolic acids of strains USC-21046T and USC-21048T consisted of chain lengths between 50–64 and 56–68, respectively. Moreover, both of those strains contained meso-diaminopimelic acid and ribose, arabinose, glucose and galactose as whole cell sugars. Based on the phylogenomic results, both strains belonged to the genus Nocardia with strain USC-21046T showing an 80.4 % genome similarity to N. vinacea NBRC 16497T and N. pseudovaccinii NBRC 100343T, whereas USC-21048T strain showed an 83.6 % genome similarity to N. aobensis NBRC 100429T. Both strains were delineated from their closely related relatives based on physiological (e.g. growth on sole carbon source) and chemotaxonomic (e.g. cellular fatty composition) differences. The digital DNA–DNA hybridization (dDDH) values between USC-21046T and USC-21048T and their closely related relatives were below the dDDH threshold value of ≤70 % used for the taxonomic classification of novel species status. The genome length of strains USC-21046T and USC-21048T were 6 878 863 and 7 066 978 bp, with G+C contents of 65.2 and 67.8 mol%, respectively. For the novel isolates, we propose the names Nocardia australiensis sp. nov. with the type strain USC-21046T (=DSM 111727T=NCCB 100867T) and Nocardia spumae sp. nov. with the type strain USC-21048T (=DSM 111726T=NCCB 100868T).
-
-
-
Brachybacterium atlanticum sp. nov., a novel marine bacterium isolated from the Atlantic Ocean
A bacterial strain, PhyBa_CO2_2T, was isolated from the North Atlantic Gyre, offshore Terceira Island in the Azores. Initially, the NCBI nucleotide blast analysis based on 16S rRNA gene sequences revealed that the strain belongs to the genus Brachybacterium , with a 100 % identity with Brachybacterium paraconglomeratum LMG 19861T. However, further genomic characterization through average nucleotide identity (ANI) and digital DNA–DNA hybridization analyses showed values of 96.06 and 64.80 %, respectively. Comparative genomics also highlighted differences in gene content. The genome size of PhyBa_CO2_2T is 3.6 Mbp and the DNA G+C content is 72.1 mol%. Chemotaxonomic analysis demonstrated that the composition of the fatty acids was mainly composed of anteiso-C15 : 0 (46.04 %), iso-C16 : 0 (13.70 %) and anteiso-C17 : 0 (9.48 %), and the polar lipids were mainly diphosphatidylglycerol, phosphatidylglycerol and two unidentified glycolipids. Furthermore, the diagnostic amino acid of the cell wall was meso-diaminopimelic acid and the predominant menaquinone was MK7. Finally, phenotypic analysis revealed differences in biochemical profiles between PhyBa_CO2_2T and its closely related strains in terms of indole production, urease and β-glucuronidase activity. Therefore, based on the genomic, chemotaxonomic and phenotypic data obtained, we concluded that strain PhyBa_CO2_2T represents a new species, for which the name Brachybacterium atlanticum sp. nov. is proposed in reference to its isolation site. The type strain is PhyBa_CO2_2T (=DSM 114113T= CECT 30695T).
-
-
-
Corynebacterium hylobatis sp. nov. and Corynebacterium lemuris sp. nov., two novel species of the genus Corynebacterium isolated from faeces of primates
More LessTwo Gram-stain positive, aerobic, short-rod-shaped, catalase-positive, oxidase-negative and non-motile strains, designated YIM 101343T and YIM 101645T, were isolated from faeces of Hylobates hoolock and Lemur catta, respectively. The results of 16S rRNA gene analysis indicated that both represented members of the genus Corynebacterium, and they shared a similarity of 98.0 % with each other. Corynebacterium marinum DSM 44953T showed the highest similarity with both strains YIM 101343T (99.0 %) and YIM 101645T (97.3 %). The results of phylogenetic analysis based on 16S rRNA gene indicated that strain YIM 101343T formed a cluster with C. marinum DSM 44953T and Corynebacterium comes 2019T, strain YIM 101645T formed a cluster with Corynebacterium halotolerans YIM 70093T, and the two clusters were neighbours. The genomic size of strain YIM 101343T was 3068751 bp and that of strain YIM 101645T was 3169714 bp. The dDDH, ANI and AAI values among strains YIM 101343T, YIM 101645T and the closely related species indicated that the two isolates represented two different novel species. Both strains contained meso-diaminopimelic acid and short-chain mycolic acids, and the major menaquinones were MK-9(H2) and MK-8(H2). The major polar lipids of the two strains were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannoside. The major fatty acids (>10 %) of both strains were C16 : 0, summed feature 4 and C18 : 1ω9c, but C17 : 1 ω8c was only present as a major component in YIM 101645T . In addition, phenotypic and some chemotaxonomic characteristics of strains YIM 101343T, YIM 101645T and the closely related species were different. Thus, strains YIM 101343T and YIM 101645T should represent two novel species of the genus Corynebacterium , for which the names Corynebacterium hylobatis sp. nov. and Corynebacterium lemuris sp. nov. are proposed, respectively. The type strains are YIM 101343T (=DSM 45970T=CCTCC AB 2013221T) and YIM 101645T (=BCRC 16963T=CCTCC AB 2013281T=KCTC 39868T).
-
-
-
Profundirhabdus halotolerans gen. nov., sp. nov., an haloalkaliphilic actinobacterium isolated from seawater of the Mariana Trench
More LessA Gram-stain-positive, strictly aerobic, rod-shaped actinobacterium, designated strain ZYF776T, was isolated from seawater of the Mariana Trench collected at a depth of 4000 m. Results of 16S rRNA gene sequence analysis indicated that strain ZYF776T was a member of the class Nitriliruptoria and closely related to Nitriliruptor alkaliphilus DSM 45188T (member of the order Nitriliruptorales , 94.94 % sequence similarity) and Egicoccus halophilus KCTC 33612T (member of the order Egicoccales , 94.46 %). Strain ZYF776T was catalase-positive and oxidase-negative. Growth occurred at 16–37 °C (optimum, 28 °C), in the presence of 0–13 % NaCl (w/v; optimum, 4 %) and at pH 7.0–10.0 (optimum, pH 8.0). Cell-wall hydrolysates of strain ZYF776T contained meso-diaminopimelic (peptidoglycan type A1γ), with ribose, rhamnose and a smaller amount of xylose as the cell-wall sugars. The major menaquinone was MK-10. The predominant fatty acids (>10 %) were C16:0, C17:1 ω8c and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c). The polar lipid profile mainly contained diphosphatidylglycerol, phosphatidylglycerol and phosphoglycolipid. The genomic DNA G+C content of strain ZYF776T was 68.7 mol%. The genome of strain ZYF776T was about 5.61 Mbp in size, which was larger than those of the reference strains N. alkaliphilus DSM45188T (5.56 Mbp) and E. halophilus KCTC 33612T (3.98 Mbp). The average nucleotide identity and digital DNA–DNA hybridization values between ZYF776T and the related strains N. alkaliphilus DSM 45188T and E. halophilus KCTC 33612T were 76.7 and 20.3 % and 75.8 and 20.0 %, respectively. Based on the polyphasic evidence, a novel genus and species with the name Profundirhabdus halotolerans gen. nov., sp. nov. is proposed. The type strain is ZYF776T (=JCM 33008T=MCCC 1K03555T).
-
- Archaea
-
-
Natrinema salsiterrestre sp. nov., an extremely halophilic archaeon isolated from a hypersaline soil
More LessAn extremely halophilic archaeal strain, designated S1CR25-10T, was isolated from hypersaline soil sampled in the Odiel Saltmarshes Natural Area in Southwestern Spain (Huelva) and subjected to a polyphasic taxonomic characterization. The cells were Gram-stain-negative, motile and their colonies were pink-pigmented. It was a strictly aerobic haloarchaeon that could grow at 25–55 °C (optimum, 37 °C), at pH 6.0–9.0 (optimum, pH 7.0–8.0) and in the presence of 12–30 % (w/v) total salts (optimum, 20–25 %, w/v). The phylogenetic analysis based on the comparison of the 16S rRNA gene sequences revealed that strain S1CR25-10T belongs to the genus Natrinema , with 98.9 % similarity to Natrinema salinisoli SLN56T. In addition, the values of orthologous average nucleotide identity, digital DNA–DNA hybridization and average amino acid identity were below the threshold limits accepted for prokaryotic species delineation, with N. salinisoli SLN56T showing the highest relatedness values (92.6 % and 48.4 %, respectively). The major polar lipids were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and a glycolipid chromatographically identical to sulfated diglycosyl diether. The DNA G+C content of the isolate was 63.8 mol%. Based on the phylogenetic, phenotypic and chemotaxonomic characterization and the whole genome results, strain S1CR25-10T represents a new species within the genus Natrinema , for which the name Natrinema salsiterrestre sp. nov., with type strain S1CR25-10T (=CECT 30623T=CCM 9251T), is proposed.
-
- Bacteroidota
-
-
Gillisia lutea sp. nov., isolated from marine aluminium residues from the Mediterranean sea
More LessA novel Gram-reaction-negative, facultatively anaerobic, rod-shaped, non-motile, non-spore forming, orange-pigmented bacterium identified as M10.2AT, was isolated from marine residues submerged on the Malva-rosa beach (València, Spain), on the western coast of the Mediterranean Sea. This strain was catalase-positive and oxidase-negative and grew under mesophilic, neutrophilic and halophilic conditions. With respect to the 16S rRNA gene sequences, M10.2AT showed similarities with Gillisia mitskevichiae DSM 19839T and Gillisia hiemivida IC154T (97.57 and 97.50 % gene sequence similarity, respectively). The genome of M10.2AT was sequenced and has been deposited in the DDBJ/ENA/GenBank databases under the accession code JAKGTH000000000. The genomic DNA G+C content was 36.13 %. Its adscription to a novel species of the genus Gillisia was confirmed by the genomic indexes average nucleotide identity by blast (ANIb) and digital DNA–DNA hybridisation (dDDH). The major fatty acids were iso-C15 : 0, iso-C15 : 1G, iso-C16 : 0 3-OH, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1ω7c/C16 : 1ω6c). According to the results of this polyphasic study, strain M10.2AT represents a novel species of the genus Gillisia , for which name Gillisia lutea sp. nov. (type strain M10.2AT = CECT 30308T = DSM 112385T) is proposed.
-
-
-
Chitinophaga nivalis sp. nov., isolated from forest soil in Pyeongchang, Republic of Korea
More LessRod-shaped Gram-stain-negative, aerobic bacterial strains, designated PC14 and PC15T, were isolated from a forest soil sample collected in Pyeongchang county, Gangwon-do, Republic of Korea. Strains PC14 and PC15T grew at 15–37 °C (optimum, 28–30 °C in tryptone soya agar and Mueller–Hinton agar), hydrolysed chitin and casein, and tolerated pH 8.5 and 2 % (w/v) NaCl. The strains were most closely related to members of the genus Chitinophaga , namely Chitinophaga arvensicola DSM 3695T (98.4 %), Chitinophaga longshanensis Z29T (98.3 %), Chitinophaga ginsengisegetis Gsoil 040T (97.8 %), Chitinophaga polysaccharea MRP-15T (97.8 %) and Chitinophaga niastensis JS16-4T (97.7 %). The type strain grew well on conventional commercial media in the laboratory, including tryptone soya agar, Mueller–Hinton agar, Reasoner's 2A agar, nutrient agar and Luria–Bertani agar. The major polar lipid profile comprised phosphatidylethanolamine, an unidentified aminolipid and unidentified polar lipids. The major respiratory quinone was menaquinone-7. The main fatty acids were iso-C15:0, C16:1 ω5c, C16:0 3-OH, iso-C15:0 3-OH and iso-C17:0 3-OH. The DNA G+C content of the isolated strain based on the whole genome sequence was 46.6 mol%. The average nucleotide identity and digital DNA–DNA hybridization values between strains PC14 and PC15T and the reference type strains ranged from 71.0 to 76.5 %, and from 20.3 to 20.7 %, respectively. Based on phenotypic, chemotypic and genotypic evidence, strain PC15T could be differentiated phylogenetically and phenotypically from the recognized species of the genus Chitinophaga . Therefore, strain PC15T is considered to represent a novel species, for which the name Chitinophaga nivalis sp. nov. is proposed. The type strain is PC15T (=KACC 22893T=JCM 35788T).
-
-
-
Chitinophaga pendula, sp. nov., from an air conditioner condensate drain line
More LessA Gram-negative, rod-shaped and filamentous bacterium designated MD30BT was isolated from a biofilm hanging in water flowing from an air conditioner condensate drain line in Honolulu, Hawai‘i. Based on 1517 nucleotides of the strain’s 16S rRNA gene, its nearest neighbours are Chitinophaga rhizosphaerae T16R-86T (96.7 %), Chitinophaga caseinilytica S-52T (96.6 %), Chitinophaga lutea ZY74T (96.6 %), Chitinophaga niabensis JS13-10T (96.6 %) and Chitinophaga ginsengisoli Gsoil 052T (96.5 %). MD30BT cells are non-motile, strictly aerobic, and catalase and oxidase positive. Growth occurs between 10 and 45 °C. Major fatty acids in whole cells of MD30BT are 13-methyl tetradecanoic acid (34.1 %), cis-11-hexadecenoic acid (30.3 %), and 3-hydroxy, 15-methyl hexadecanoic acid (13.3 %). The quinone system contains predominantly menaquinone MK-7. The polar lipid profile contains the major lipids phosphatidylethanolamine, one unidentified lipid lacking a functional group, and two unidentified aminolipids. sym-Homospermidine is the major polyamine. The G+C content of the genome is 47.58 mol%. Based on phenotypic and genotypic differences between MD30BT and extant species in the Chitinophaga , we propose that MD30BT represents a new Chitinophaga species, for which the name Chitinophaga pendula sp. nov. is proposed to accommodate strain MD30BT as the type strain (DSM 112477T=NCTC 14606T).
-
- Bacillota
-
-
Lentibacillus daqui sp. nov., isolated from high-temperature Daqu, a starter for production of Chinese Jiang-flavour Baijiu
A Gram-stain-positive, rod-shaped, endospore-forming, aerobic bacterial strain, designated ZS110521T, was isolated from high-temperature Daqu, a starter for production of Chinese Jiang-flavour Baijiu and was characterised by polyphasic taxonomy. This novel isolate grew in the presence of 0–20 % (w/v) NaCl, at pH 6.0–9.0 and 20–50 °C; optimum growth was observed with 8–10 % (w/v) NaCl, at pH 7.0 and 37 °C. A comparative analysis of the 16S rRNA gene sequence (1460 bp) of ZS110521T revealed that it displayed the highest similarity to Lentibacillus populi WD4L-1T (95.5 %), followed by Lentibacillus garicola SL-MJ1T (95.4 %) and Lentibacillus lacisalsi BH260T (95.2 %). ANI and dDDH values between ZS110521T and other strains of species of the genus Lentibacillus were less than 78 and 28 %, respectively. The predominant cellular fatty acids (> 10 %) of ZS110521T were anteiso-C17 : 0 (37.8 %), anteiso-C15 : 0 (28.1 %) and iso-C16 : 0 (15.5 %). The respiratory quinone was identified as menaquinone-7 (MK-7) and the major polar lipids were diphosphatidylglycerol and phosphatidylglycerol. The polyphasic taxonomic data and the results of chemotaxonomic analysis confirmed that ZS110521T represents a novel species, for which the name Lentibacillus daqui sp. nov. is proposed. The type strain of this proposed species is ZS110521T (=CGMCC 1.19456T =JCM 35213T).
-
-
-
Faecalibacterium hominis Liu et al. 2023 is a later heterotypic synonym of Faecalibacterium duncaniae Sakamoto et al. 2022
More LessA strain of the recently validated species Faecalibacterium hominis shares 99.0 % 16S rRNA gene sequence similarity with the type strain of Faecalibacterium duncaniae . The aim of this study was to evaluate the taxonomic relationship between F. hominis and F. duncaniae. F. duncaniae JCM 31915T showed 73.0 % digital DNA–DNA hybridization (dDDH) value with F. hominis JCM 39347T. The average nucleotide identity (ANI) value between these two strains was 96.7 %. These results indicate that F. duncaniae JCM 31915T and F. hominis JCM 39347T represent members of the same species. Based on these data, we propose Faecalibacterium hominis as a later heterotypic synonym of Faecalibacterium duncaniae . An emended description is provided.
-
-
-
Streptococcus sciuri sp. nov., Staphylococcus marylandisciuri sp. nov. and Staphylococcus americanisciuri sp. nov., isolated from faeces of eastern grey squirrel (Sciurus carolinensis)
One novel Streptococcus strain (SQ9-PEAT) and two novel Staphylococcus strains (SQ8-PEAT and GRT3T) were isolated from faeces of a wild eastern grey squirrel. The strains were non-spore-forming, non-motile Gram-positive cocci, facultative anaerobes. The genomes for these strains were sequenced. The 16S rRNA gene and core-genome-based phylogenetic analyses showed that strain SQ9-PEAT was closely related to Streptococcus hyointestinalis , strain SQ8-PEAT to Staphylococcus pettenkoferi and Staphylococcus argensis , and strain GRT3T to Staphylococcus rostri , Staphylococcus muscae and Staphylococcus microti . Average nucleotide identity and pairwise digital DNA–DNA hybridization values calculated for these novel strains compared to type strain genomes of phylogenetically related species within the genera Streptococcus and Staphylococcus clearly revealed that strain SQ9-PEAT represents a novel species of the genus Streptococcus and strains SQ8-PEAT and GRT3T represent two novel species of the genus Staphylococcus . Phenotypical features of these novel type strains differed from the features of the type strains of other phylogenetically related species. MALDI-TOF mass spectrometry supported identification of these novel species. Based on these data, we propose one novel species of the genus Streptococcus , for which the name Streptococcus sciuri sp. nov. with the type strain SQ9-PEAT (=DSM 114656T=CCUG 76426T=NCTC 14727T) is proposed, and two novel species of the genus Staphylococcus , for which the names Staphylococcus marylandisciuri sp. nov. with the type strain SQ8-PEAT (=DSM 114685T=CCUG 76423T=NCTC 14723T) and Staphylococcus americanisciuri sp. nov. with the type strain GRT3T (=DSM 114696T=CCUG 76427T=NCTC 14722T) are proposed. The genome G+C contents are 38.29, 36.49 and 37.26 mol% and complete draft genome sizes are 1 692 266, 2 371 088 and 2 237 001 bp for strains SQ9-PEAT, SQ8-PEAT and GRT3T, respectively.
-
-
-
Alkalicoccobacillus porphyridii sp. nov., isolated from a marine red alga, reclassification of Shouchella plakortidis and Shouchella gibsonii as Alkalicoccobacillus plakortidis comb. nov. and Alkalicoccobacillus gibsonii comb. nov., and emended description of the genus Alkalicoccobacillus Joshi et al. 2022
More LessA Gram-stain-positive alkali-tolerant and strictly aerobic bacterium, designated strain P16T, was isolated from a marine red alga, Porphyridium cruentum, in the Yellow Sea, Republic of Korea. Cells were motile rods with peritrichous flagella and exhibited catalase and oxidase activities. The optimal growth of strain P16T was observed to occur at 30 °C and pH 8.0 and in the presence of 2.0 % (w/v) NaCl. Menaquinone-7 was identified as the sole respiratory quinone. Strain P16T contained anteiso-C15 : 0, iso-C15 : 0, iso-C14 : 0 and iso-C16 : 0, and diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine as major cellular fatty acids and polar lipids, respectively. The G+C content of strain P16T was 40.8 mol%. Strain P16T was most closely related to Shouchella plakortidis P203T, Shouchella gibsonii DSM 8722T and Alkalicoccobacillus murimartini LMG 21005T with 98.1, 98.1 and 98.0 % 16S rRNA gene sequence similarities, respectively. Phylogenetic analyses based on 16S rRNA gene and genome sequences revealed that strain P16T, S, plakortidis, S. gibsonii and A. murimartini formed a single phylogenetic lineage cluster, and genomic relatedness analyses showed that they are different species. Based on phylogenetic, phenotypic, chemotaxonomic and molecular features, strain P16T represents a novel species of the genus Alkalicoccobacillus , for which the name Alkalicoccobacillus porphyridii sp. nov. is proposed. The type strain is P16T (=KACC 19520T=JCM 32931T). In addition, S. plakortidis and S. gibsonii are reclassified as Alkalicoccobacillus plakortidis comb. nov. (type strain P203T=DSM 19153T=NCIMB 14288T) and Alkalicoccobacillus gibsonii comb. nov. (type strain PN-109T=ATCC 700164T=DSM 8722T=KCCM 41407T), respectively.
-
- Other Bacteria
-
-
Thiovibrio frasassiensis gen. nov., sp. nov., an autotrophic, elemental sulphur disproportionating bacterium isolated from sulphidic karst sediment, and proposal of Thiovibrionaceae fam. nov.
A novel, autotrophic, mesophilic bacterium, strain RS19-109T, was isolated from sulphidic stream sediments in the Frasassi Caves, Italy. The cells of this strain grew chemolithoautotrophically under anaerobic conditions while disproportionating elemental sulphur (S0) and thiosulphate, but not sulphite with bicarbonate/CO2 as a carbon source. Autotrophic growth was also observed with molecular hydrogen as an electron donor, and S0, sulphate, thiosulphate, nitrate and ferric iron as electron acceptors. Oxygen was not used as an electron acceptor and sulphide was not used as an electron donor. Weak growth was observed with sulphate as an electron acceptor and organic carbon as an electron donor and carbon source. The strain also showed weak growth by fermentation of tryptone. It grew at pH 5.5–7.5 (optimum, pH 7.0), 4–35 °C (optimum, 30 °C) and between 0–1.7 % NaCl. Strain RS19-109T was found to be phylogenetically distinct based on 16S rRNA gene sequence similarity (89.2 %) to its closest relative, Desulfurivibrio alkaliphilus AHT2T. The draft genome sequence for strain RS19-109T had average nucleotide identity, average amino acid identity and in silico DNA–DNA hybridization values of 72.2, 63.0 and 18.3 %, respectively, compared with the genome sequence of D. alkaliphilus AHT2T. On the basis of its physiological and genomic properties, strain RS19-109T is proposed as the type strain of a novel species of a novel genus, Thiovibrio frasassiensis gen. nov., sp. nov. A novel family, Thiovibrionaceae fam. nov., is proposed to accommodate Thiovibrio within the order Desulfobulbales . Strain RS19-109T has been deposited at the DSMZ-German Collection of Microorganisms and Cell Cultures (=DSM 115074T) and the American Type Culture Collection (=ATCC TSD-325T).
-
-
-
Haliovirga abyssi gen. nov., sp. nov., a mesophilic fermentative bacterium isolated from the Iheya North hydrothermal field, and proposal of Haliovirgaceae fam. nov.
A novel mesophilic, obligately anaerobic, facultatively sulphur-reducing bacterium, designated strain IC12T, was isolated from a deep-sea hydrothermal field in the Mid-Okinawa Trough, Japan. The cells were Gram-negative, motile, short rods with a single polar flagellum. The ranges and optima of the growth temperature, NaCl concentration and pH of strain IC12T were 15–40 °C (optimum, 30–35 °C), 10–60 g l−1 (optimum, 20–30 g l−1) and pH 4.9–6.7 (optimum, pH 5.8), respectively. Yeast extract was utilized as a sole carbon and energy source for fermentative growth. Major fatty acids of strain IC12T were C14 : 0, C16 : 0 and C16 : 1 ω7. Results of phylogenetic analysis based on 16S rRNA gene sequences indicated that strain IC12T was affiliated to the phylum Fusobacteriota and was most closely related to Ilyobacter insuetus VenChi2T (86.5 % sequence similarity). Strain IC12T contained a chromosome of 2.43 Mbp and a large plasmid of 0.30 Mbp. The G+C content of the genomic DNA was 26.4 mol%. The maximum values for average nucleotide identity and in silico DNA–DNA hybridization between strain IC12T and related strains of the phylum Fusobacteriota were 71.4 and 26.4 %, respectively. Phylogenomic, physiological and chemotaxonomic analyses indicate that strain IC12T represents a novel genus and species within the phylum Fusobacteriota , for which the name Haliovirga abyssi gen. nov., sp. nov. is proposed, with strain IC12T (= DSM 112164T=JCM 39166T) as the type strain. We also propose the family Haliovirgaceae fam. nov. to accommodate this novel genus.
-
- Pseudomonadota
-
-
Starkeya nomas sp. nov., a prosthecate and budding bacterium isolated from an immunocompromized patient
José Miguel Sahuquillo-Arce, Mariana Reyes-Prieto, Alicia Hernández-Cabezas, José Miguel Molina-Moreno, Juan Antonio Saez-Nieto, María del Pilar Marín, María Isabel Alcoriza-Balaguer, Agustín Lahoz, Jaime Sanz, Lola González-Tarancón, María Loreto Ferrús, Llúcia Martínez-Priego, Adolfo Magraner-Martínez and José Luis López-HontangasStrain HF14-78462T is an environmental bacterium found in clinical samples from an immunocompromized patient in 2014 at Hospital Universitari i Politècnic La Fe (Valencia, Spain). Phenotypically, strain HF14-78462T cells were Gram-stain-negative, aerobic, non-spore forming and non-motile small rods which formed mucous and whitish-translucent colonies when incubated at 20–36 °C. Phylogenetic analyses based on the 16S rRNA genes and the whole genomes of closest sequenced relatives confirmed that strain HF14-78462T is affiliated with the genus Starkeya . The strain was oxidase, catalase and urease positive; but indole, lysine decarboxylase, ornithine decarboxylase and DNase negative, did not produce H2S and was able to utilize a wide variety of carbon sources including acetamide, adonitol, amygdalin, l-arabinose, citric acid, glucose, mannitol and melibiose. Unlike Starkeya novella and Starkeya koreensis , strain HF14-78462T failed to grow in thiosulphate-oxidizing media and had a narrower temperature growth range. Its genome was characterized by a size of 4.83 Mbp and a C+G content of 67.75 mol%. Major fatty acids were C18:1 ω7c, cyclo C19 : 0 and C16 : 0, its polar acids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol and an aminophospholipid; while the ubiquinones were Q9 (1.8 %) and Q10 (98.2 %). Digital DNA–DNA hybridization values were 41 and 41.4 against S. novella and S. koreensis , respectively, while average nucleotide identity values were around 84 %. Phenotypic, average nucleotide identity and phylogenomic comparative studies suggest that strain HF14-78462T is a new representative of the genus Starkeya and the name Starkeya nomas sp. nov. is proposed. The type strain is HF14-78462T (=CECT 30124T=LMG 31874T).
-
-
-
Bartonella raoultii sp. nov., isolated from infected rodents (Mastomys erythroleucus) in Senegal
Bartonella species are involved in various human diseases, causing a range of clinical manifestations; animals are considered as the main reservoirs, transmitting diverse species of Bartonella through direct contact and haematophagous insects. Here, we characterize a new species, Bartonella raoultii sp. nov., within the genus Bartonella , using a taxonogenomic polyphasic approach. Strain 094T (= CSUR B1097T=DSM 28004T), isolated from the blood of an infected rodent (Mastomys erythroleucus) in Senegal, is an aerobic and rod-shaped bacterium. The annotated non-contiguous genome sequence is 1 952322 bp long and contains 37.2 mol% G+C content, 1686 protein-coding genes and 50 RNA genes, including seven rRNA genes.
-
-
-
Pantoea leporis sp. nov., isolated from the faecal material of a rabbit
More LessA facultative anaerobic, Gram-stain-negative rod-shaped bacterium, designated RT, was isolated from the faecal material of a rabbit (Sylvilagus floridanus). The strain could not be identified using an MALDI Biotyper sirius CA System. The closest matches based on the Bruker library were members of the genera Citrobacter and Pantoea . However, the score value was in the range of no organism identification possible. Based on pairwise of 16S rRNA gene sequence analysis, the isolate was found to be a member of the family Erwiniaceae . The highest sequence similarities were found to the sequences of Pantoea rodasii LMG 26273T (98.7 %), Leclercia adecarboxylata NBRC 102595T (98.5 %) and Enterobacter huaxiensis 090008T (98.4 %). Phylogenetic and whole genome analysis demonstrated that strain RT represents a novel species within the genus Pantoea . The predominant cellular fatty acids of strain RT were C16 : 0 and products present in summed feature 2 (C12 : 0) aldehyde, summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c) and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). In silico genome analysis showed the presence of enzymes required for production of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylserine. The G+C content determined from the genome was 54.94 mol %. Based on biochemical, phylogenetic, genotypic and chemotaxonomic criteria, the isolate represents a novel species of the genus Pantoea for which the name Pantoea leporis sp. nov. is proposed. The type strain is strain RT (=CCUG 76269T=ATCC TSD-291T).
-
-
-
Sinisalibacter aestuarii sp. nov., isolated from estuarine sediment of the Arakawa River
A Gram-stain-negative, rod-shaped, non-motile and strictly aerobic bacterium, which showed biofilm-forming ability on polystyrene, designated as strain B-399T, was isolated from the estuarine sediment of the Arakawa River near Tokyo Bay. It grew at pH 6.0–8.5, at 15–35 °C and in the presence of 0–7.5 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain B-399T was clustered in the genus Sinisalibacter and has 96.94 % sequence similarity to Sinisalibacter lacisalsi X12M-4T, which was the only validly described species in this genus. On the basis of our genome sequencing analyses, the average nucleotide identity and digital DNA–DNA hybridization values between strains B-399T and S. lacisalsi X12M-4T were 79.54 and 22.30 %, respectively, which confirms that strain B-399T represents a novel species of the genus Sinisalibacter . The draft genome size and the DNA G+C content of strain B-399T were 4.12 Mb and 65.2 mol%, respectively. The major fatty acids (>10 %) of strain B-399T were C16 : 0, summed feature 8 (C18 : 1 ω6c and/or C18 : 1 ω7c) and C19 : 0 cyclo ω8c. The polar lipids were phosphatidylcholine, phosphatidylglycerol, an unidentified phospholipid, an unidentified aminolipid and unidentified lipids. The respiratory quinone was Q-10. These chemotaxonomic features were almost coincident with those of the genus Sinisalibacter . Therefore, strain B-399T should be classified as representing a new species of the genus Sinisalibacter , for which the name Sinisalibacter aestuarii sp. nov. is proposed. The type strain is B-399T (=NBRC 115629T=DSM 114148T).
-
-
-
Genome-wide and constrained ordination-based analyses of EC code data support reclassification of the species of Massilia La Scola et al. 2000 into Telluria Bowman et al. 1993, Mokoshia gen. nov. and Zemynaea gen. nov.
More LessBased on genome-wide data, Massilia species belonging to the clade including Telluria mixta LMG 11547T should be entirely transferred to the genus Telluria owing to the nomenclatural priority of the type species Telluria mixta . This results in the transfer of 35 Massilia species to the genus Telluria . The presented data also supports the creation of two new genera since peripherally branching Massilia species are distinct from Telluria and other related genera. It is proposed that 13 Massilia species are transferred to Mokoshia gen. nov. with the type species designated Mokoshia eurypsychrophila comb. nov. The species Massilia arenosa is proposed to belong to the genus Zemynaea gen. nov. as the type species Zemynaea arenosa comb. nov. The genome-wide analysis was well supported by canonical ordination analysis of Enzyme Commission (EC) codes annotated from genomes via pannzer2. This new approach was performed to assess the conclusions of the genome-based data and reduce possible ambiguity in the taxonomic decision making. Cross-validation of EC code data compared within canonical plots validated the reclassifications and correctly visualized the expected genus-level taxonomic relationships. The approach is complementary to genome-wide methodology and could be used for testing sequence alignment based data across genetically related genera. In addition to the proposed broader reclassifications, invalidly described species ‘Massilia antibiotica’, ‘Massilia aromaticivorans’, ‘Massilia cellulosiltytica’ and ‘ Massilia humi ’ are described as Telluria antibiotica sp. nov., Telluria aromaticivorans sp. nov., Telluria cellulosilytica sp. nov. and Pseudoduganella humi sp. nov., respectively. In addition, Telluria chitinolytica is reclassified as Pseudoduganella chitinolytica comb. nov. The use of combined genome-wide and annotation descriptors compared using canonical ordination clarifies the taxonomy of Telluria and its sibling genera and provides another way to evaluate complex taxonomic data.
-
Volumes and issues
-
Volume 74 (2024)
-
Volume 73 (2023)
-
Volume 72 (2022 - 2023)
-
Volume 71 (2020 - 2021)
-
Volume 70 (2020)
-
Volume 69 (2019)
-
Volume 68 (2018)
-
Volume 67 (2017)
-
Volume 66 (2016)
-
Volume 65 (2015)
-
Volume 64 (2014)
-
Volume 63 (2013)
-
Volume 62 (2012)
-
Volume 61 (2011)
-
Volume 60 (2010)
-
Volume 59 (2009)
-
Volume 58 (2008)
-
Volume 57 (2007)
-
Volume 56 (2006)
-
Volume 55 (2005)
-
Volume 54 (2004)
-
Volume 53 (2003)
-
Volume 52 (2002)
-
Volume 51 (2001)
-
Volume 50 (2000)
-
Volume 49 (1999)
-
Volume 48 (1998)
-
Volume 47 (1997)
-
Volume 46 (1996)
-
Volume 45 (1995)
-
Volume 44 (1994)
-
Volume 43 (1993)
-
Volume 42 (1992)
-
Volume 41 (1991)
-
Volume 40 (1990)
-
Volume 39 (1989)
-
Volume 38 (1988)
-
Volume 37 (1987)
-
Volume 36 (1986)
-
Volume 35 (1985)
-
Volume 34 (1984)
-
Volume 33 (1983)
-
Volume 32 (1982)
-
Volume 31 (1981)
-
Volume 30 (1980)
-
Volume 29 (1979)
-
Volume 28 (1978)
-
Volume 27 (1977)
-
Volume 26 (1976)
-
Volume 25 (1975)
-
Volume 24 (1974)
-
Volume 23 (1973)
-
Volume 22 (1972)
-
Volume 21 (1971)
-
Volume 20 (1970)
-
Volume 19 (1969)
-
Volume 18 (1968)
-
Volume 17 (1967)
-
Volume 16 (1966)
-
Volume 15 (1965)
-
Volume 14 (1964)
-
Volume 13 (1963)
-
Volume 12 (1962)
-
Volume 11 (1961)
-
Volume 10 (1960)
-
Volume 9 (1959)
-
Volume 8 (1958)
-
Volume 7 (1957)
-
Volume 6 (1956)
-
Volume 5 (1955)
-
Volume 4 (1954)
-
Volume 3 (1953)
-
Volume 2 (1952)
-
Volume 1 (1951)