1887

Abstract

An extremely halophilic archaeal strain, designated S1CR25-10, was isolated from hypersaline soil sampled in the Odiel Saltmarshes Natural Area in Southwestern Spain (Huelva) and subjected to a polyphasic taxonomic characterization. The cells were Gram-stain-negative, motile and their colonies were pink-pigmented. It was a strictly aerobic haloarchaeon that could grow at 25–55 °C (optimum, 37 °C), at pH 6.0–9.0 (optimum, pH 7.0–8.0) and in the presence of 12–30 % (w/v) total salts (optimum, 20–25 %, w/v). The phylogenetic analysis based on the comparison of the 16S rRNA gene sequences revealed that strain S1CR25-10 belongs to the genus , with 98.9 % similarity to SLN56. In addition, the values of orthologous average nucleotide identity, digital DNA–DNA hybridization and average amino acid identity were below the threshold limits accepted for prokaryotic species delineation, with SLN56 showing the highest relatedness values (92.6 % and 48.4 %, respectively). The major polar lipids were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and a glycolipid chromatographically identical to sulfated diglycosyl diether. The DNA G+C content of the isolate was 63.8 mol%. Based on the phylogenetic, phenotypic and chemotaxonomic characterization and the whole genome results, strain S1CR25-10 represents a new species within the genus , for which the name sp. nov., with type strain S1CR25-10 (=CECT 30623=CCM 9251), is proposed.

Funding
This study was supported by the:
  • Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Award BIO-213)
    • Principle Award Recipient: AntonioVentosa
  • Consejería de Economía, Conocimiento, Empresas y Universidad, Junta de Andalucía (Award P20_01066)
    • Principle Award Recipient: AntonioVentosa
  • MCIN/AEI (Award PID2020-118136GB-I00)
    • Principle Award Recipient: AntonioVentosa
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005960
2023-08-14
2024-05-09
Loading full text...

Full text loading...

References

  1. McGenity TJ, Gemmell RT, Grant WD. Proposal of a new halobacterial genus Natrinema gen. nov., with two species Natrinema pellirubrum nom. nov. and Natrinema pallidum nom. nov. Int J Syst Bacteriol 1998; 48:1187–1196 [View Article] [PubMed]
    [Google Scholar]
  2. Ventosa A, Gutiérrez MC, Kamekura M, Dyall-Smith ML. Proposal to transfer Halococcus turkmenicus, Halobacterium trapanicum JCM 9743 and strain GSL-11 to Haloterrigena turkmenica gen. nov., comb. nov. Int J Syst Bacteriol 1999; 49:131–136 [View Article] [PubMed]
    [Google Scholar]
  3. Tindall BJ. Taxonomic problems arising in the genera Haloterrigena and Natrinema. Int J Syst Evol Microbiol 2003; 53:1697–1698 [View Article]
    [Google Scholar]
  4. Wright A-DG. Phylogenetic relationships within the order Halobacteriales inferred from 16S rRNA gene sequences. Int J Syst Evol Microbiol 2006; 56:1223–1227 [View Article]
    [Google Scholar]
  5. Enache M, Itoh T, Fukushima T, Usami R, Dumitru L et al. Phylogenetic relationships within the family Halobacteriaceae inferred from rpoB’ gene and protein sequences. Int J Syst Evol Microbiol 2007; 57:2289–2295 [View Article] [PubMed]
    [Google Scholar]
  6. Minegishi H, Kamekura M, Itoh T, Echigo A, Usami R et al. Further refinement of the phylogeny of the Halobacteriaceae based on the full-length RNA polymerase subunit B′ (rpoB′) gene. Int J Syst Evol Microbiol 2010; 60:2398–2408 [View Article]
    [Google Scholar]
  7. Papke RT, White E, Reddy P, Weigel G, Kamekura M et al. A multilocus sequence analysis approach to the phylogeny and taxonomy of the Halobacteriales. Int J Syst Evol Microbiol 2011; 61:2984–2995 [View Article] [PubMed]
    [Google Scholar]
  8. de la Haba RR, Minegishi H, Kamekura M, Shimane Y, Ventosa A. Phylogenomics of haloarchaea: the controversy of the genera Natrinema-Haloterrigena. Front Microbiol 2021; 12:740909 [View Article]
    [Google Scholar]
  9. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  10. Consejería de Medio Ambiente de la Junta de Andalucía. Los criterios y estándares para declarar un suelo contaminado en Andalucía y la metodología y técnicas de toma de muestra y análisis para su investigación. Sevilla: Junta de Andalucía; 1999.
  11. Tavoosi N, Akhavan Sepahi A, Amoozegar MA, Kiarostami V. Toxic heavy metal/oxyanion tolerance in haloarchaea from some saline and hypersaline ecosystems. J Basic Microbiol 2023; 63:558–569 [View Article] [PubMed]
    [Google Scholar]
  12. Krzmarzick MJ, Taylor DK, Fu X, McCutchan AL. Diversity and niche of archaea in bioremediation. Archaea 2018; 2018:1–17 [View Article]
    [Google Scholar]
  13. Vera-Bernal M, Martínez-Espinosa RM. Insights on cadmium removal by bioremediation: the case of haloarchaea. Microbiol Res 2021; 12:354–375 [View Article]
    [Google Scholar]
  14. Subov NN. Oceanographical Tables. Commissariat of Agriculture of USSR. Hydro-Meteorological Committee of USSR Moscow: Oceanographical Institute of USSR; 1931
    [Google Scholar]
  15. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–218 [View Article]
    [Google Scholar]
  16. Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual Cold Spring Harbor, NY: Laboratory Press; 2001
    [Google Scholar]
  17. DeLong EF. Archaea in coastal marine environments. Proc Natl Acad Sci USA 1992; 89:5685–5689 [View Article]
    [Google Scholar]
  18. Arahal DR, Dewhirst FE, Paster BJ, Volcani BE, Ventosa A. Phylogenetic analyses of some extremely halophilic archaea isolated from Dead Sea water, determined on the basis of their 16S rRNA sequences. Appl Environ Microbiol 1996; 62:3779–3786 [View Article] [PubMed]
    [Google Scholar]
  19. Fullmer MS, Soucy SM, Swithers KS, Makkay AM, Wheeler R et al. Population and genomic analysis of the genus Halorubrum. Front Microbiol 2014; 5:140 [View Article] [PubMed]
    [Google Scholar]
  20. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article] [PubMed]
    [Google Scholar]
  21. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  22. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  24. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  25. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32:1363–1371 [View Article] [PubMed]
    [Google Scholar]
  26. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  27. Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes de novo assembler. Curr Protoc Bioinformatics 2020; 70:e102 [View Article] [PubMed]
    [Google Scholar]
  28. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article]
    [Google Scholar]
  29. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  30. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016 [View Article]
    [Google Scholar]
  31. de la Haba RR, López-Hermoso C, Sánchez-Porro C, Konstantinidis KT, Ventosa A. Comparative genomics and phylogenomic analysis of the genus Salinivibrio.. Front Microbiol 2019; 10:2104 [View Article] [PubMed]
    [Google Scholar]
  32. Price MN, Dehal PS, Arkin AP. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article] [PubMed]
    [Google Scholar]
  33. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article]
    [Google Scholar]
  34. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  35. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  36. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  37. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol 2014; 64:316–324 [View Article]
    [Google Scholar]
  38. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  39. Xu L, Dong Z, Fang L, Luo Y, Wei Z et al. OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 2019; 47:W52–W58 [View Article]
    [Google Scholar]
  40. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Pro-digal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article] [PubMed]
    [Google Scholar]
  41. Rice P, Longden I, Bleasby A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 2000; 16:276–277 [View Article] [PubMed]
    [Google Scholar]
  42. Becker EA, Seitzer PM, Tritt A, Larsen D, Krusor M et al. Phylogenetically driven sequencing of extremely halophilic archaea reveals strategies for static and dynamic osmo-response. PLoS Genet 2014; 10:e1004784 [View Article] [PubMed]
    [Google Scholar]
  43. Oren A, Ventosa A, Grant WD. Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 1997; 47:233–238 [View Article]
    [Google Scholar]
  44. Cowan ST, Steel KJ. Manual para la identificación de bacterias de importancia médica México, DF: Compañía Editorial Continental; 1982
    [Google Scholar]
  45. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703 [View Article] [PubMed]
    [Google Scholar]
  46. Durán-Viseras A, Sánchez-Porro C, Ventosa A. Natronomonas salsuginis sp. nov., a new inhabitant of a marine solar saltern. Microorganisms 2020; 8:605 [View Article]
    [Google Scholar]
  47. Smibert RM, Krieg NR. General characterization. In Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA et al. eds Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981 pp 409–443
    [Google Scholar]
  48. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  49. Christensen WB. Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. J Bacteriol 1946; 52:461–466 [View Article] [PubMed]
    [Google Scholar]
  50. Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A. Numerical taxonomy of moderately halophilic Gram-negative rods. Microbiology 1982; 128:1959–1968 [View Article]
    [Google Scholar]
  51. Torreblanca M, Rodriguez-Valera F, Juez G, Ventosa A, Kamekura M et al. Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov. Syst Appl Microbiol 1986; 8:89–99 [View Article]
    [Google Scholar]
  52. Angelini R, Corral P, Lopalco P, Ventosa A, Corcelli A. Novel ether lipid cardiolipins in archaeal membranes of extreme haloalkali-philes. Biochim Biophys Acta 2012; 1818:1365–1373 [View Article] [PubMed]
    [Google Scholar]
  53. Corral P, Gutiérrez MC, Castillo AM, Domínguez M, Lopalco P et al. Natronococcus roseus sp. nov., a haloalkaliphilic archaeon from a hypersaline lake. Int J Syst Evol Microbiol 2013; 63:104–108 [View Article] [PubMed]
    [Google Scholar]
  54. Albuquerque L, Taborda M, La Cono V, Yakimov M, da Costa MS. Natrinema salaciae sp. nov., a halophilic archaeon isolated from the deep, hypersaline anoxic Lake Medee in the Eastern Medite-rranean Sea. Syst Appl Microbiol 2012; 35:368–373 [View Article] [PubMed]
    [Google Scholar]
  55. Xin H, Itoh T, Zhou P, Suzuki K, Kamekura M et al. Natrinema versiforme sp. nov., an extremely halophilic archaeon from Aibi salt lake, Xinjiang, China. Int J Syst Evol Microbiol 2000; 50:1297–1303 [View Article] [PubMed]
    [Google Scholar]
  56. Bao C-X, Li S-Y, Xin Y-J, Hou J, Cui HL. Natrinema halophilum sp. nov., Natrinema salinisoli sp. nov., Natrinema amylolyticum sp. nov. and Haloterrigena alkaliphila sp. nov., four extremely halophilic archaea isolated from salt mine, saline soil and salt lake. Int J Syst Evol Microbiol 2022; 72:005385 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005960
Loading
/content/journal/ijsem/10.1099/ijsem.0.005960
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error