1887

Abstract

Strains USC-21046 and USC-21048 were isolated from foaming coastal marine waters on the Sunshine Coast, Queensland, Australia. Both strains displayed growth and morphological characteristics typical for members belonging to the genus . The major polar lipids were diphosphatidylglycerol and phosphatidylethanolamine, and the major fatty acids were C, C ω9, C and C 10-methyl. The mycolic acids of strains USC-21046 and USC-21048 consisted of chain lengths between 50–64 and 56–68, respectively. Moreover, both of those strains contained -diaminopimelic acid and ribose, arabinose, glucose and galactose as whole cell sugars. Based on the phylogenomic results, both strains belonged to the genus with strain USC-21046 showing an 80.4 % genome similarity to NBRC 16497 and NBRC 100343, whereas USC-21048 strain showed an 83.6 % genome similarity to NBRC 100429. Both strains were delineated from their closely related relatives based on physiological (e.g. growth on sole carbon source) and chemotaxonomic (e.g. cellular fatty composition) differences. The digital DNA–DNA hybridization (dDDH) values between USC-21046 and USC-21048 and their closely related relatives were below the dDDH threshold value of ≤70 % used for the taxonomic classification of novel species status. The genome length of strains USC-21046 and USC-21048 were 6 878 863 and 7 066 978 bp, with G+C contents of 65.2 and 67.8 mol%, respectively. For the novel isolates, we propose the names sp. nov. with the type strain USC-21046 (=DSM 111727=NCCB 100867) and sp. nov. with the type strain USC-21048 (=DSM 111726=NCCB 100868).

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005952
2023-08-04
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/73/8/ijsem005952.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.005952&mimeType=html&fmt=ahah

References

  1. Nocard E. Note sur La Maladie des Boeufs de la Guadeloupe Connue sous Le Nom de Farcin. Ann L’Inst Pasteur 1888; 2:293–302
    [Google Scholar]
  2. Trevisan V. I generi e le specie della batteriacee. In International Bulletin of Bacteriological Nomenclature and Taxonomy (Reproduced) vol 2 Zanaboni & Gabuzzi; 1889 pp 13–44
    [Google Scholar]
  3. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  4. Camozzota C, Goldman A, Tchernev G, Lotti T, Wollina U. A primary cutaneous nocardiosis of the hand. Open Access Maced J Med Sci 2017; 5:470–472 [View Article] [PubMed]
    [Google Scholar]
  5. Sapkota A, Thapa A, Budhathoki A, Sainju M, Shrestha P et al. Isolation, characterization, and screening of antimicrobial-producing actinomycetes from soil samples. Int J Microbiol 2020; 2020:2716584 [View Article] [PubMed]
    [Google Scholar]
  6. Conville PS, Witebsky FG. The complexity of nocardia taxonomy: implications for the clinical microbiology laboratory. Clin Microbiol Newsl 2010; 32:119–125 [View Article]
    [Google Scholar]
  7. Desai HH, Wickstrom KK, Low SW, Mahmoud N. Nocardia: an unusual bacteria in an unexpected patient. In D49 Lung Infection Case Reports II: Infections Other Than Fungal Infections American Thoracic Society; 2016 pp A7166
    [Google Scholar]
  8. Palomba E, Liparoti A, Tonizzo A, Castelli V, Alagna L et al. Nocardia infections in the immunocompromised host: a case series and literature review. Microorganisms 2022; 10:1120 [View Article] [PubMed]
    [Google Scholar]
  9. Tariq EF, Anwar MM, Khan UA. Primary cutaneous nocardiosis: a rare presentation of nocardiosis. Cureus 2019; 11:e5860 [View Article]
    [Google Scholar]
  10. Christova N, Lang S, Wray V, Kaloyanov K, Konstantinov S et al. Production, structural elucidation, and in vitro antitumor activity of trehalose lipid biosurfactant from Nocardia farcinica strain. J Microbiol Biotechnol 2015; 25:439–447 [View Article] [PubMed]
    [Google Scholar]
  11. Oelschlaeger TA, Hacker J. Bacterial invasion into eukaryotic cells. In Nocardia Asteroides as an Invasive, Intracellular Pathogen of the Brain and Lungs. Bacterial Invasion into Eukaryotic Cells Boston, MA: Springer; 2000 pp 167–197 [View Article]
    [Google Scholar]
  12. Trevino-Villarreal JH, Vera-Cabrera L, Valero-Guillén PL, Salinas-Carmona MC. Nocardia brasiliensis cell wall lipids modulate macrophage and dendritic responses that favor development of experimental actinomycetoma in BALB/c mice. Infect Immun 2012; 80:3587–3601 [View Article] [PubMed]
    [Google Scholar]
  13. Valdezate S, Garrido N, Carrasco G, Villalón P, Medina-Pascual MJ et al. Resistance gene pool to co-trimoxazole in non-susceptible Nocardia strains. Front Microbiol 2015; 6:376 [View Article] [PubMed]
    [Google Scholar]
  14. Mehta HH, Shamoo Y, Kline KA. Pathogenic Nocardia: a diverse genus of emerging pathogens or just poorly recognized?. PLoS Pathog 2020; 16:e1008280 [View Article]
    [Google Scholar]
  15. Dhakal D, Rayamajhi V, Mishra R, Sohng JK. Bioactive molecules from Nocardia:diversity, bioactivities and biosynthesis. J Ind Microbiol Biotechnol 2019; 46:385–407 [View Article] [PubMed]
    [Google Scholar]
  16. Aoki H, Sakai H-I, Kohsaka M, Konomi T, Hosoda J et al. Nocardicin A, a new monocyclic.BETA.-lactam antibiotic. I. Discovery, isolation and characterization. J Antibiot 1976; 29:492–500 [View Article]
    [Google Scholar]
  17. Mikami Y, Komaki H, Imai T, Yazawa K, Nemoto A et al. A new antifungal macrolide component, Brasilinolide B, produced by Nocardia brasiliensis. J Antibiot 2000; 53:70–74 [View Article]
    [Google Scholar]
  18. Schneider K, Rose I, Vikineswary S, Jones AL, Goodfellow M et al. Nocardichelins A and B, siderophores from Nocardia strain acta 3026. J Nat Prod 2007; 70:932–935 [View Article]
    [Google Scholar]
  19. Mikami Y, Yazawa K, Nemoto A, Komaki H, Tanaka Y et al. Production of erythromycin E by pathogenic Nocardia brasiliensis. J Antibiot 1999; 52:201–202 [View Article]
    [Google Scholar]
  20. Yang R-Q, Zhang B-L, Sun H-L, Zhang G-S, Li S-W et al. Nocardia mangyaensis sp. nov., a novel actinomycete isolated from crude-oil-contaminated soil. Int J Syst Evol Microbiol 2019; 69:397–403 [View Article] [PubMed]
    [Google Scholar]
  21. Tsuchii A, Tokiwa Y. Microbial degradation of the natural rubber in tire tread compound by a strain of Nocardia. J Polym Environ 2006; 14:403–409 [View Article]
    [Google Scholar]
  22. Linh DV, Huong NL, Tabata M, Imai S, Iijima S et al. Characterization and functional expression of a rubber degradation gene of a Nocardia degrader from a rubber-processing factory. J Biosci Bioeng 2017; 123:412–418 [View Article] [PubMed]
    [Google Scholar]
  23. Catania V, Lopresti F, Cappello S, Scaffaro R, Quatrini P. Innovative, ecofriendly biosorbent-biodegrading biofilms for bioremediation of oil- contaminated water. N Biotechnol 2020; 58:25–31 [View Article] [PubMed]
    [Google Scholar]
  24. Yang R, Liu G, Chen T, Li S, An L et al. Characterization of the genome of a Nocardia strain isolated from soils in the Qinghai-Tibetan Plateau that specifically degrades crude oil and of this biodegradation. Genomics 2019; 111:356–366 [View Article] [PubMed]
    [Google Scholar]
  25. Basik AA, Sanglier J-J, Yeo CT, Sudesh K. Microbial degradation of rubber: actinobacteria. Polymers 2021; 13:1989 [View Article]
    [Google Scholar]
  26. Kurtböke DI. eds Selective Isolation of Rare Actinomycetes. Queensland Complete Printing Services Nambour, Australia: 2003
    [Google Scholar]
  27. Wright L, Katouli M, Kurtböke . Isolation and characterization of nocardiae associated with foaming coastal marine waters. Pathogens 2021; 10:579 [View Article] [PubMed]
    [Google Scholar]
  28. Baym M, Kryazhimskiy S, Lieberman TD, Chung H, Desai MM et al. Inexpensive multiplexed library preparation for megabase-sized genomes. PLoS One 2015; 10:e0128036 [View Article] [PubMed]
    [Google Scholar]
  29. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25:1754–1760 [View Article] [PubMed]
    [Google Scholar]
  30. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article] [PubMed]
    [Google Scholar]
  31. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  32. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  33. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article]
    [Google Scholar]
  34. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol 2018; 9:2007 [View Article] [PubMed]
    [Google Scholar]
  35. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:1–14 [View Article]
    [Google Scholar]
  36. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  37. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  38. Kelly K. Color-Name Charts Illustrated with Centroid Colors Chicago, USA: Inter-Society Color Council-National Bureau of Standards; 1964
    [Google Scholar]
  39. Zhao J, Han X, Hu H, Ling L, Zhang X et al. Nocardia stercoris sp. nov., a novel actinomycete isolated from the cow dung. Int J Syst Evol Microbiol 2020; 70:493–498 [View Article]
    [Google Scholar]
  40. Xie Q, Lin H, Li L, Brown R, Goodfellow M et al. Verrucosispora wenchangensis sp. nov., isolated from mangrove soil. Antonie van Leeuwenhoek 2012; 102:1–7 [View Article] [PubMed]
    [Google Scholar]
  41. Lammert J. Techniques in Microbiology: A Student Handbook California, USA: Benjamin-Cummings Publishing Company; 2007
    [Google Scholar]
  42. Cross T. Growth and examination of actinomycetes-some guidelines. In Bergey’s Manual of Systematic Bacteriology vol 4 Springer; 1989 pp 2340–2343
    [Google Scholar]
  43. Kurtböke DI. Bioactive Actinomycetes: reaching rarity through sound understanding of selective culture and molecular diversity. Microbial resources 201745–76
    [Google Scholar]
  44. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 1974; 24:54–63 [View Article]
    [Google Scholar]
  45. Sazak A, Sahin N, Camas M. Nocardia goodfellowii sp. nov. and Nocardia thraciensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2012; 62:1228–1234 [View Article] [PubMed]
    [Google Scholar]
  46. Vaddavalli R, Peddi S, Kothagauni SY, Linga VR. Nocardia bhagyanesis sp. nov., a novel actinomycete isolated from the rhizosphere of Callistemon citrinus (Curtis), India. Antonie van Leeuwenhoek 2014; 105:443–450 [View Article] [PubMed]
    [Google Scholar]
  47. Schumann P. Peptidoglycan structure. In Methods in Microbiology Elsevier; 2011 pp 101–129
    [Google Scholar]
  48. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article] [PubMed]
    [Google Scholar]
  49. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology ASM Press; 2007 pp 330–393 [View Article]
    [Google Scholar]
  50. Sasser M. Technical Note 101: Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark, DE: Microbial ID, Inc.; 2001
    [Google Scholar]
  51. Vilchèze C, Jacobs WR. Isolation and analysis of Mycobacterium tuberculosis mycolic acids. Curr Protoc Microbiol 2007; Chapter 10:Unit 10A.3 [View Article] [PubMed]
    [Google Scholar]
  52. Bouam A, Armstrong N, Levasseur A, Drancourt M. Mycobacterium terramassiliense, Mycobacterium rhizamassiliense and Mycobacterium numidiamassiliense sp. nov., three new Mycobacterium simiae complex species cultured from plant roots. Sci Rep 2018; 8:1–13 [View Article]
    [Google Scholar]
  53. Kim KK, Roth A, Andrees S, Lee ST, Kroppenstedt RM. Nocardia pseudovaccinii sp. nov. Int J Syst Evol Microbiol 2002; 52:1825–1829 [View Article]
    [Google Scholar]
  54. Kinoshita N, Homma Y, Igarashi M, Ikeno S, Hori M et al. Nocardia vinacea sp. nov. Actinomycetologica 2001; 15:1–5 [View Article]
    [Google Scholar]
  55. Kageyama A, Si S, Yazawa K, Nishimura K, Kroppenstedt RM et al. Nocardia aobensis sp. nov., isolated from patients in Japan. Microbiol Immunol 2004; 48: [View Article] [PubMed]
    [Google Scholar]
  56. Conville PS, Brown JM, Steigerwalt AG, Lee JW, Anderson VL et al. Nocardia kruczakiae sp. nov., a pathogen in immunocompromised patients and a member of the “N. nova complex.”. J Clin Microbiol 2004; 42:5139–5145 [View Article] [PubMed]
    [Google Scholar]
  57. Gürtler V, Smith R, Mayall BC, Pötter-Reinemann G, Stackebrandt E et al. Nocardia veterana sp. nov., isolated from human bronchial lavage. Int J Syst Evol Microbiol 2001; 51:933–936 [View Article] [PubMed]
    [Google Scholar]
  58. Kageyama A, Yazawa K, Nishimura K, Mikami Y. Nocardia anaemiae sp. nov. isolated from an immunocompromised patient and the first isolation report of Nocardia vinacea from humans. Jpn J Med Mycol 2005; 46:21–26 [View Article]
    [Google Scholar]
  59. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
  60. Suzuki K. NBRC, a National Biological Resource Centre of Japan. Microbiol Aust 2006; 27:33 [View Article]
    [Google Scholar]
  61. Pruitt KD, Tatusova T, Maglott DR. NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 2005; 33:D501–4 [View Article] [PubMed]
    [Google Scholar]
  62. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol 2018; 9:2007 [View Article] [PubMed]
    [Google Scholar]
  63. Reimer LC, Vetcininova A, Carbasse JS, Söhngen C, Gleim D et al. BacDive in 2019: bacterial phenotypic data for high-throughput biodiversity analysis. Nucleic Acids Res 2019; 47:D631–D636 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005952
Loading
/content/journal/ijsem/10.1099/ijsem.0.005952
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error