1887

Abstract

A novel Gram-reaction-negative, facultatively anaerobic, rod-shaped, non-motile, non-spore forming, orange-pigmented bacterium identified as M10.2A, was isolated from marine residues submerged on the Malva-rosa beach (València, Spain), on the western coast of the Mediterranean Sea. This strain was catalase-positive and oxidase-negative and grew under mesophilic, neutrophilic and halophilic conditions. With respect to the 16S rRNA gene sequences, M10.2A showed similarities with DSM 19839 and IC154 (97.57 and 97.50 % gene sequence similarity, respectively). The genome of M10.2A was sequenced and has been deposited in the DDBJ/ENA/GenBank databases under the accession code JAKGTH000000000. The genomic DNA G+C content was 36.13 %. Its adscription to a novel species of the genus was confirmed by the genomic indexes average nucleotide identity by (ANIb) and digital DNA–DNA hybridisation (dDDH). The major fatty acids were iso-C, iso-CG, iso-C 3-OH, iso-C 3-OH and summed feature 3 (Cω7/Cω6). According to the results of this polyphasic study, strain M10.2A represents a novel species of the genus , for which name sp. nov. (type strain M10.2A = CECT 30308 = DSM 112385) is proposed.

Funding
This study was supported by the:
  • Horizon 2020 Framework Programme (Award ID101000470)
    • Principle Award Recipient: NotApplicable
  • Ministerio de Ciencia e Innovación (Award FPU18/02578)
    • Principle Award Recipient: ÀngelaVidal-Verdú
  • Ministerio de Ciencia e Innovación (Award FPU17/04184)
    • Principle Award Recipient: EstherMolina-Menor
  • Ministerio de Ciencia e Innovación (Award RTI2018-095584-B-C41-42-43-44)
    • Principle Award Recipient: NotApplicable
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005957
2023-08-11
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/73/8/ijsem005957.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.005957&mimeType=html&fmt=ahah

References

  1. Van Trappen S, Vandecandelaere I, Mergaert J, Swings J. Gillisia limnaea gen. nov., sp. nov., a new member of the family Flavobacteriaceae isolated from a microbial mat in Lake Fryxell, Antarctica. Int J Syst Evol Microbiol 2004; 54:445–448 [View Article]
    [Google Scholar]
  2. Roh SW, Lee M, Lee H-W, Yim KJ, Heo SY et al. Gillisia marina sp. nov., from seashore sand, and emended description of the genus Gillisia. Int J Syst Evol Microbiol 2013; 63:3640–3645 [View Article]
    [Google Scholar]
  3. Lee OO, Lau SCK, Tsoi MMY, Li X, Plakhotnikova I et al. Gillisia myxillae sp. nov., a novel member of the family Flavobacteriaceae, isolated from the marine sponge Myxilla incrustans. Int J Syst Evol Microbiol 2006; 56:1795–1799 [View Article] [PubMed]
    [Google Scholar]
  4. Nedashkovskaya OI, Kim SB, Lee KH, Mikhailov VV, Bae KS. Gillisia mitskevichiae sp. nov., a novel bacterium of the family Flavobacteriaceae, isolated from sea water. Int J Syst Evol Microbiol 2005; 55:321–323 [View Article]
    [Google Scholar]
  5. Bowman JP, Nichols DS. Novel members of the family Flavobacteriaceae from Antarctic maritime habitats including Subsaximicrobium wynnwilliamsii gen. nov., sp. nov., Subsaximicrobium saxinquilinus sp. nov., Subsaxibacter broadyi gen. nov., sp. nov., Lacinutrix copepodicola gen. nov., sp. nov., and novel species of the genera Bizionia, Gelidibacter and Gillisia. Int J Syst Evol Microbiol 2005; 55:1471–1486 [View Article] [PubMed]
    [Google Scholar]
  6. Vidal‐Verdú À, Latorre‐Pérez A, Molina‐Menor E, Baixeras J, Peretó J et al. Living in a bottle: bacteria from sediment‐associated Mediterranean waste and potential growth on polyethylene terephthalate. MicrobiologyOpen 2022; 11: [View Article]
    [Google Scholar]
  7. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note vol 101 Newark: DE: MIDI; 1990
    [Google Scholar]
  8. MIDI Sherlock Microbial Identification System Operating Manual, Version 6.1 Newark, DE: MIDI Inc; 2008
    [Google Scholar]
  9. Molina-Menor E, Gimeno-Valero H, Pascual J, Peretó J, Porcar M. High culturable bacterial diversity from a European desert: the Tabernas desert. Front Microbiol 2020; 11:583120 [View Article] [PubMed]
    [Google Scholar]
  10. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  11. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1897; 4:406–425
    [Google Scholar]
  12. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  13. Andrews S. Fastqc: A Quality Control Tool for High Throughput Sequence Data; 2010 http://www.bioinformatics.babraham.ac.uk/projects/fastqc
  14. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  15. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  16. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  17. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  18. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  19. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  20. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article] [PubMed]
    [Google Scholar]
  21. Trappen SV. Gillisia. In Trujillo ME, Dedysh S, DeVos P, Hedlund B, Kämpfer P et al. eds Bergey’s Manual of Systematics of Archaea 2015 [View Article]
    [Google Scholar]
  22. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  23. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  24. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005957
Loading
/content/journal/ijsem/10.1099/ijsem.0.005957
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error