1887

Abstract

A bacterial strain, PhyBa_CO2_2, was isolated from the North Atlantic Gyre, offshore Terceira Island in the Azores. Initially, the NCBI nucleotide analysis based on 16S rRNA gene sequences revealed that the strain belongs to the genus , with a 100 % identity with LMG 19861. However, further genomic characterization through average nucleotide identity (ANI) and digital DNA–DNA hybridization analyses showed values of 96.06 and 64.80 %, respectively. Comparative genomics also highlighted differences in gene content. The genome size of PhyBa_CO2_2 is 3.6 Mbp and the DNA G+C content is 72.1 mol%. Chemotaxonomic analysis demonstrated that the composition of the fatty acids was mainly composed of anteiso-C (46.04 %), iso-C (13.70 %) and anteiso-C (9.48 %), and the polar lipids were mainly diphosphatidylglycerol, phosphatidylglycerol and two unidentified glycolipids. Furthermore, the diagnostic amino acid of the cell wall was -diaminopimelic acid and the predominant menaquinone was MK7. Finally, phenotypic analysis revealed differences in biochemical profiles between PhyBa_CO2_2 and its closely related strains in terms of indole production, urease and β-glucuronidase activity. Therefore, based on the genomic, chemotaxonomic and phenotypic data obtained, we concluded that strain PhyBa_CO2_2 represents a new species, for which the name sp. nov. is proposed in reference to its isolation site. The type strain is PhyBa_CO2_2 (=DSM 114113= CECT 30695).

Funding
This study was supported by the:
  • Fundo Regional para a Ciência e Tecnologia (Award M3.1.a/F/017/2018)
    • Principle Award Recipient: SusanaRibeiro
  • Fundação para a Ciência e a Tecnologia (Award LA/P/0094/2020)
    • Principle Award Recipient: NotApplicable
  • Fundação para a Ciência e a Tecnologia (Award UIDB/50017/2020)
    • Principle Award Recipient: NotApplicable
  • Fundação para a Ciência e a Tecnologia (Award UIDP/50017/2020)
    • Principle Award Recipient: NotApplicable
  • ARM program-ENA project and IITAA (Award UIDB/00153/2019)
    • Principle Award Recipient: NotApplicable
  • Fundo Regional para a Ciência e Tecnologia (Award ACORES-01-0145-FEDER-000038)
    • Principle Award Recipient: NotApplicable
  • Fundação para a Ciência e a Tecnologia
    • Principle Award Recipient: VanessaOliveira
  • Fundação para a Ciência e a Tecnologia (Award UI/BD/150890/2021)
    • Principle Award Recipient: Inêsde Castro
  • Fundação para a Ciência e a Tecnologia (Award CEECIND/00070/2017)
    • Principle Award Recipient: FranciscoJ.R.C. Coelho
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005959
2023-08-04
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/73/8/ijsem005959.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.005959&mimeType=html&fmt=ahah

References

  1. Collins MD, Brown J, Jones D. Brachybacterium faecium gen. nov., sp. nov., a coryneform bacterium from poultry deep litter. Int J Syst Bacteriol 1988; 38:45–48 [View Article]
    [Google Scholar]
  2. Stackebrandt E, Rainey FA, Ward-rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 1997; 47:479–491 [View Article]
    [Google Scholar]
  3. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  4. Buczolits S, Schumann P, Weidler G, Radax C, Busse HJ. Brachybacterium muris sp. nov., isolated from the liver of a laboratory mouse strain. Int J Syst Evol Microbiol 2003; 53:1955–1960 [View Article] [PubMed]
    [Google Scholar]
  5. Tak EJ, Kim PS, Hyun D-W, Kim HS, Lee J-Y et al. Phenotypic and genomic properties of Brachybacterium vulturis sp. nov. and Brachybacterium avium sp. nov. Front Microbiol 2018; 9: [View Article]
    [Google Scholar]
  6. Gontia I, Kavita K, Schmid M, Hartmann A, Jha B. Brachybacterium saurashtrense sp. nov., a halotolerant root-associated bacterium with plant growth-promoting potential. Int J Syst Evol Microbiol 2011; 61:2799–2804 [View Article] [PubMed]
    [Google Scholar]
  7. Liu Y, Zhai L, Yao S, Cao Y, Cao Y et al. Brachybacterium hainanense sp. nov., isolated from noni (Morinda citrifolia L.) branch. Int J Syst Evol Microbiol 2015; 65:4196–4201 [View Article] [PubMed]
    [Google Scholar]
  8. Tuo L, Yan X-R, Li F-N, Bao Y-X, Shi H-C et al. Brachybacterium endophyticum sp. nov., a novel endophytic actinobacterium isolated from bark of Scutellaria baicalensis Georgi. Int J Syst Evol Microbiol 2018; 68:3563–3568 [View Article]
    [Google Scholar]
  9. Singh H, Du J, Yang J-E, Shik Yin C, Kook M et al. Brachybacterium horti sp. nov., isolated from garden soil. Int J Syst Evol Microbiol 2016; 66:189–195 [View Article] [PubMed]
    [Google Scholar]
  10. Hoang VA, Kim YJ, Nguyen NL, Yang DC. Brachybacterium ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2014; 64:3063–3068 [View Article]
    [Google Scholar]
  11. Liu Y, Xie Q-Y, Shi W, Li L, An J-Y et al. Brachybacterium huguangmaarense sp. nov., isolated from lake sediment. Int J Syst Evol Microbiol 2014; 64:1673–1678 [View Article]
    [Google Scholar]
  12. Kaur G, Kumar N, Mual P, Kumar A, Kumar RM et al. Brachybacterium aquaticum sp. nov., a novel actinobacterium isolated from seawater. Int J Syst Evol Microbiol 2016; 66:4705–4710 [View Article] [PubMed]
    [Google Scholar]
  13. Gvozdyak OR, Nogina TM, Schumann P. Taxonomic study of the genus Brachybacterium: Brachybacterium nesterenkovii sp. nov. Int J Syst Bacteriol 1992; 42:74–78 [View Article] [PubMed]
    [Google Scholar]
  14. Schubert K, Ludwig W, Springer N, Kroppenstedt RM, Accolas JP et al. Two coryneform bacteria isolated from the surface of French Gruyère and Beaufort cheeses are new species of the genus Brachybacterium: Brachybacterium alimentarium sp. nov. and Brachybacterium tyrofermentans sp. nov. Int J Syst Bacteriol 1996; 46:81–87 [View Article] [PubMed]
    [Google Scholar]
  15. Park S-K, Kim M-S, Jung M-J, Nam Y-D, Park E-J et al. Brachybacterium squillarum sp. nov., isolated from salt-fermented seafood. Int J Syst Evol Microbiol 2011; 61:1118–1122 [View Article]
    [Google Scholar]
  16. Takeuchi M, Fang CX, Yokota A. Taxonomic study of the genus Brachybacterium: proposal of Brachybacterium conglomeratum sp. nov., nom. rev., Brachybacterium paraconglomeratum sp. nov., and Brachybacterium rhamnosum sp. nov. Int J Syst Bacteriol 1995; 45:160–168 [View Article]
    [Google Scholar]
  17. Tamai K, Akashi Y, Yoshimoto Y, Yaguchi Y, Takeuchi Y et al. First case of a bloodstream infection caused by the genus Brachybacterium. J Infect Chemother 2018; 24:998–1003 [View Article] [PubMed]
    [Google Scholar]
  18. Brummaier T, Hinfothong P, Soe NL, Tongmanakit J, Watthanaworawit W et al. Brachybacterium nesterenkovii isolated from a human blood culture–a first report. New Microbes New Infect 2020; 36:100699 [View Article] [PubMed]
    [Google Scholar]
  19. Murata K, Ozawa K, Kawakami H, Mochizuki K, Ohkusu K. Brachybacterium paraconglomeratum endophthalmitis postcataract operation. Case Rep Ophthalmol Med 2020; 2020:1513069 [View Article] [PubMed]
    [Google Scholar]
  20. Orsod M, Mugambwa J, Huyop F. Characterization of exopolysaccharides produced by Bacillus cereus and Brachybacterium sp. isolated from Asian sea bass (Lates calcarifer). Malays J Microbiol 2012; 8:170–174 [View Article]
    [Google Scholar]
  21. Kim YS, Son HJ, Jeong SY. Isolation of an algicide from a marine bacterium and its effects against the toxic dinoflagellate Alexandrium catenella and other harmful algal bloom species. J Microbiol 2015; 53:511–517 [View Article] [PubMed]
    [Google Scholar]
  22. Kiran GS, Sabarathnam B, Thajuddin N, Selvin J. Production of glycolipid biosurfactant from sponge-associated marine Actinobacterium Brachybacterium paraconglomeratum MSA21. J Surfact Deterg 2014; 17:531–542 [View Article]
    [Google Scholar]
  23. Wang W, Shao Z, Liu Y, Wang G. Removal of multi-heavy metals using biogenic manganese oxides generated by a deep-sea sedimentary bacterium - Brachybacterium sp. strain Mn32. Microbiology 2009; 155:1989–1996 [View Article] [PubMed]
    [Google Scholar]
  24. Hall TA. Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  25. Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J Comput Biol 2000; 7:203–214 [View Article] [PubMed]
    [Google Scholar]
  26. Kumar S, Stecher G, Li M, Knyaz C, Tamura K et al. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article]
    [Google Scholar]
  27. Goldman N. Maximum likelihood inference of phylogenetic trees, with special reference to a poisson process model of DNA substitution and to parsimony analyses. Syst Zool 1990; 39:345 [View Article]
    [Google Scholar]
  28. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  29. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  30. Tittsler RP, Sandholzer LA. The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 1936; 31:575–580 [View Article]
    [Google Scholar]
  31. Xu P, Li W-J, Tang S-K, Zhang Y-Q, Chen G-Z et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family “Oxalobacteraceae” isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article] [PubMed]
    [Google Scholar]
  32. Schumann P. Peptidoglycan structure. Methods Microbiol 2011; 38:101–129
    [Google Scholar]
  33. Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes de novo assembler. Curr Protoc Bioinformatics 2020; 70:e102 [View Article] [PubMed]
    [Google Scholar]
  34. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
  35. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  36. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article]
    [Google Scholar]
  37. Yoon SH, Ha SM, Lim JM, Kwon SJ, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  38. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  39. Meier-Kolthoff JP, Klenk HP, Göker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014; 64:352–356 [View Article] [PubMed]
    [Google Scholar]
  40. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  41. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article] [PubMed]
    [Google Scholar]
  42. Souza CP, Almeida BC, Colwell RR, Rivera ING. The importance of chitin in the marine environment. Mar Biotechnol 2011; 13:823–830 [View Article]
    [Google Scholar]
  43. Tamadoni Jahromi S, Barzkar N. Marine bacterial chitinase as sources of energy, eco-friendly agent, and industrial biocatalyst. Int J Biol Macromol 2018; 120:2147–2154 [View Article] [PubMed]
    [Google Scholar]
  44. Sebastian M, Ammerman JW. The alkaline phosphatase PhoX is more widely distributed in marine bacteria than the classical PhoA. ISME J 2009; 3:563–572 [View Article] [PubMed]
    [Google Scholar]
  45. Lindmark DG, Müller M. Superoxide dismutase in the anaerobic flagellates, Tritrichomonas foetus and Monocercomonas sp. J Biol Chem 1974; 249:4634–4637 [PubMed]
    [Google Scholar]
  46. Buckel W, Thauer RK. Flavin-based electron bifurcation, ferredoxin, flavodoxin, and anaerobic respiration With protons (Ech) or NAD+ (Rnf) as electron acceptors: a historical review. Front Microbiol 2018; 9:401 [View Article] [PubMed]
    [Google Scholar]
  47. Saltikov CW, Newman DK. Genetic identification of a respiratory arsenate reductase. Proc Natl Acad Sci 2003; 100:10983–10988 [View Article] [PubMed]
    [Google Scholar]
  48. Gross M, Marianovsky I, Glaser G. MazG – a regulator of programmed cell death in Escherichia coli. Mol Microbiol 2006; 59:590–601 [View Article] [PubMed]
    [Google Scholar]
  49. Dash HR, Das S. Bioremediation of mercury and the importance of bacterial mer genes. Int Biodeterior Biodegrad 2012; 75:207–213 [View Article]
    [Google Scholar]
  50. Vasu K, Nagaraja V. Diverse functions of restriction-modification systems in addition to cellular defense. Microbiol Mol Biol Rev 2013; 77:53–72 [View Article] [PubMed]
    [Google Scholar]
  51. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
  52. Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat 1972; 106:645–668 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005959
Loading
/content/journal/ijsem/10.1099/ijsem.0.005959
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error