1887

Abstract

A novel, autotrophic, mesophilic bacterium, strain RS19-109, was isolated from sulphidic stream sediments in the Frasassi Caves, Italy. The cells of this strain grew chemolithoautotrophically under anaerobic conditions while disproportionating elemental sulphur (S) and thiosulphate, but not sulphite with bicarbonate/CO as a carbon source. Autotrophic growth was also observed with molecular hydrogen as an electron donor, and S, sulphate, thiosulphate, nitrate and ferric iron as electron acceptors. Oxygen was not used as an electron acceptor and sulphide was not used as an electron donor. Weak growth was observed with sulphate as an electron acceptor and organic carbon as an electron donor and carbon source. The strain also showed weak growth by fermentation of tryptone. It grew at pH 5.5–7.5 (optimum, pH 7.0), 4–35 °C (optimum, 30 °C) and between 0–1.7 % NaCl. Strain RS19-109 was found to be phylogenetically distinct based on 16S rRNA gene sequence similarity (89.2 %) to its closest relative, AHT2. The draft genome sequence for strain RS19-109 had average nucleotide identity, average amino acid identity and DNA–DNA hybridization values of 72.2, 63.0 and 18.3 %, respectively, compared with the genome sequence of AHT2. On the basis of its physiological and genomic properties, strain RS19-109 is proposed as the type strain of a novel species of a novel genus, gen. nov., sp. nov. A novel family, fam. nov., is proposed to accommodate within the order . Strain RS19-109 has been deposited at the DSMZ-German Collection of Microorganisms and Cell Cultures (=DSM 115074) and the American Type Culture Collection (=ATCC TSD-325).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006003
2023-08-23
2024-05-08
Loading full text...

Full text loading...

References

  1. Aronson H H, Thomas C C, Bhattacharyya MK MK, Eckstein SR SR, Jensen SR SR et al. Thiovibrio frasassiensis gen. nov., sp. nov., an autotrophic, elemental sulphur disproportionating bacterium isolated from sulphidic karst sediment, and proposal of Thiovibrionaceae fam. nov. Figshare 2023 [View Article]
    [Google Scholar]
  2. Slobodkin AI, Slobodkina GB. Diversity of sulfur-disproportionating microorganisms. Microbiology 2019; 88:509–522 [View Article]
    [Google Scholar]
  3. Widdel F, Pfennig N. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids II. Incomplete oxidation of propionate by Desulfobulbus propionicus gen. nov., sp. nov. Arch Microbiol 1982; 131:360–365 [View Article]
    [Google Scholar]
  4. Lovley DR, Phillips EJ. Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria. Appl Environ Microbiol 1994; 60:2394–2399 [View Article] [PubMed]
    [Google Scholar]
  5. Janssen PH, Schuhmann A, Bak F, Liesack W. Disproportionation of inorganic sulfur compounds by the sulfate-reducing bacterium Desulfocapsa thiozymogenes gen. nov., sp. nov. Arch Microbiol 1996; 166:184–192 [View Article]
    [Google Scholar]
  6. Friedrich M, Springer N, Ludwig W, Schink B. Phylogenetic positions of Desulfofustis glycolicus gen. nov., sp. nov. and Syntrophobotulus glycolicus gen. nov., sp. nov., two new strict anaerobes growing with glycolic acid. Int J Syst Bacteriol 1996; 46:1065–1069 [View Article] [PubMed]
    [Google Scholar]
  7. Finster K, Liesack W, Thamdrup B. Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp. nov., a new anaerobic bacterium isolated from marine surface sediment. Appl Environ Microbiol 1998; 64:119–125 [View Article] [PubMed]
    [Google Scholar]
  8. Francis CA, Obraztsova AY, Tebo BM. Dissimilatory metal reduction by the facultative anaerobe Pantoea agglomerans SP1. Appl Environ Microbiol 2000; 66:543–548 [View Article] [PubMed]
    [Google Scholar]
  9. Obraztsova AY, Francis CA, Tebo BM. Sulfur disproportionation by the facultative anaerobe Pantoea agglomerans SP1 as a mechanism for chromium(VI) reduction. Geomicrobiol J 2002; 19:121–132 [View Article]
    [Google Scholar]
  10. Peduzzi S, Tonolla M, Hahn D. Isolation and characterization of aggregate-forming sulfate-reducing and purple sulfur bacteria from the chemocline of meromictic lake Cadagno, Switzerland. FEMS Microbiol Ecol 2003; 45:29–37 [View Article] [PubMed]
    [Google Scholar]
  11. Sorokin DY, Tourova TP, Mußmann M, Muyzer G. Dethiobacter alkaliphilus gen. nov. sp. nov., and Desulfurivibrio alkaliphilus gen. nov. sp. nov.: two novel representatives of reductive sulfur cycle from soda lakes. Extremophiles 2008; 12:431–439 [View Article] [PubMed]
    [Google Scholar]
  12. Poser A, Lohmayer R, Vogt C, Knoeller K, Planer-Friedrich B et al. Disproportionation of elemental sulfur by haloalkaliphilic bacteria from soda lakes. Extremophiles 2013; 17:1003–1012 [View Article] [PubMed]
    [Google Scholar]
  13. Slobodkin AI, Reysenbach A-L, Slobodkina GB, Baslerov RV, Kostrikina NA et al. Thermosulfurimonas dismutans gen. nov., sp. nov., an extremely thermophilic sulfur-disproportionating bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 2012; 62:2565–2571 [View Article] [PubMed]
    [Google Scholar]
  14. Slobodkin AI, Reysenbach A-L, Slobodkina GB, Kolganova TV, Kostrikina NA et al. Dissulfuribacter thermophilus gen. nov., sp. nov., a thermophilic, autotrophic, sulfur-disproportionating, deeply branching deltaproteobacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 2013; 63:1967–1971 [View Article] [PubMed]
    [Google Scholar]
  15. Slobodkina GB, Kolganova TV, Kopitsyn DS, Viryasov MB, Bonch-Osmolovskaya EA et al. Dissulfurirhabdus thermomarina gen. nov., sp. nov., a thermophilic, autotrophic, sulfite-reducing and disproportionating deltaproteobacterium isolated from a shallow-sea hydrothermal vent. Int J Syst Evol Microbiol 2016; 66:2515–2519 [View Article] [PubMed]
    [Google Scholar]
  16. Slobodkina GB, Reysenbach A-L, Kolganova TV, Novikov AA, Bonch-Osmolovskaya EA et al. Thermosulfuriphilus ammonigenes gen. nov., sp. nov., a thermophilic, chemolithoautotrophic bacterium capable of respiratory ammonification of nitrate with elemental sulfur. Int J Syst Evol Microbiol 2017; 67:3474–3479 [View Article] [PubMed]
    [Google Scholar]
  17. Florentino AP, Brienza C, Stams AJM, Sánchez-Andrea I. Desulfurella amilsii sp. nov., a novel acidotolerant sulfur-respiring bacterium isolated from acidic river sediments. Int J Syst Evol Microbiol 2016; 66:1249–1253 [View Article] [PubMed]
    [Google Scholar]
  18. Kojima H, Umezawa K, Fukui M. Caldimicrobium thiodismutans sp. nov., a sulfur-disproportionating bacterium isolated from a hot spring, and emended description of the genus Caldimicrobium. Int J Syst Evol Microbiol 2016; 66:1828–1831 [View Article] [PubMed]
    [Google Scholar]
  19. Merkel AY, Pimenov NV, Rusanov II, Slobodkin AI, Slobodkina GB et al. Microbial diversity and autotrophic activity in Kamchatka hot springs. Extremophiles 2017; 21:307–317 [View Article] [PubMed]
    [Google Scholar]
  20. Umezawa K, Kojima H, Kato Y, Fukui M. Dissulfurispira thermophila gen. nov., sp. nov., a thermophilic chemolithoautotroph growing by sulfur disproportionation, and proposal of novel taxa in the phylum Nitrospirota to reclassify the genus Thermodesulfovibrio. Syst Appl Microbiol 2021; 44:126184 [View Article] [PubMed]
    [Google Scholar]
  21. Macalady JL, Lyon EH, Koffman B, Albertson LK, Meyer K et al. Dominant microbial populations in limestone-corroding stream biofilms, Frasassi cave system, Italy. Appl Environ Microbiol 2006; 72:5596–5609 [View Article] [PubMed]
    [Google Scholar]
  22. Lovley DR, Phillips EJ. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 1986; 51:683–689 [View Article] [PubMed]
    [Google Scholar]
  23. Stookey LL. Ferrozine-a new spectrophotometric reagent for iron. Anal Chem 1970; 42:779–781 [View Article]
    [Google Scholar]
  24. Kolmert A, Wikström P, Hallberg KB. A fast and simple turbidimetric method for the determination of sulfate in sulfate-reducing bacterial cultures. J Microbiol Methods 2000; 41:179–184 [View Article] [PubMed]
    [Google Scholar]
  25. Lovley DR, Phillips EJP. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 1988; 54:1472–1480 [View Article] [PubMed]
    [Google Scholar]
  26. Cline JD. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 1969; 14:454–458 [View Article]
    [Google Scholar]
  27. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  28. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [View Article] [PubMed]
    [Google Scholar]
  29. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  30. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article] [PubMed]
    [Google Scholar]
  31. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2012; 41:D590–D596 [View Article] [PubMed]
    [Google Scholar]
  32. Simons A. A quality control tool for high throughput sequence data. A quality control tool for high throughput sequence data; 2010 https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
  33. Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes De Novo assembler. Curr Protoc Bioinformatics 2020; 70:e102 [View Article] [PubMed]
    [Google Scholar]
  34. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  35. Neely CJ, Graham ED, Tully BJ. MetaSanity: an integrated microbial genome evaluation and annotation pipeline. Bioinformatics 2020; 36:4341–4344 [View Article] [PubMed]
    [Google Scholar]
  36. Zhou Z, Tran P, Liu Y, Kieft K, Anantharaman K. METABOLIC: a scalable high-throughput metabolic and biogeochemical functional trait profiler based on microbial genomes; 2019761643
  37. Lee MD. GToTree: a user-friendly workflow for phylogenomics. Bioinformatics 2019; 35:4162–4164 [View Article] [PubMed]
    [Google Scholar]
  38. Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res 2022; 50:D785–D794 [View Article] [PubMed]
    [Google Scholar]
  39. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res 2015; 43:6761–6771 [View Article] [PubMed]
    [Google Scholar]
  40. Kim D, Park S, Chun J. Introducing EzAAI: a pipeline for high throughput calculations of prokaryotic average amino acid identity. J Microbiol 2021; 59:476–480 [View Article] [PubMed]
    [Google Scholar]
  41. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  42. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  43. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article] [PubMed]
    [Google Scholar]
  44. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH, Hancock J. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2019; 36:1925–1927 [View Article] [PubMed]
    [Google Scholar]
  45. Thamdrup B, Finster K, Hansen JW, Bak F. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Appl Environ Microbiol 1993; 59:101–108 [View Article] [PubMed]
    [Google Scholar]
  46. Fossing H, Jørgensen B. Measurement of bacterial sulfate reduction in sediments: evaluation of a single-step chromium reduction method. Biogeochemistry 1989; 8:205–222 [View Article]
    [Google Scholar]
  47. Berner RA. Sedimentary pyrite formation. Am J Sci 1970; 268:1–23 [View Article]
    [Google Scholar]
  48. Rickard DT. Kinetics and mechanism of pyrite formation at low temperatures. Am J Sci 1975; 275:636–652 [View Article]
    [Google Scholar]
  49. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  50. Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J 2017; 11:2399–2406 [View Article] [PubMed]
    [Google Scholar]
  51. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article] [PubMed]
    [Google Scholar]
  52. Waite DW, Chuvochina M, Pelikan C, Parks DH, Yilmaz P et al. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int J Syst Evol Microbiol 2020; 70:5972–6016 [View Article] [PubMed]
    [Google Scholar]
  53. Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol 2017; 2:1533–1542 [View Article] [PubMed]
    [Google Scholar]
  54. Ward LM, Bertran E, Johnston DT. Expanded genomic sampling refines current understanding of the distribution and evolution of sulfur metabolisms in the Desulfobulbales. Front Microbiol 2021; 12:666052 [View Article] [PubMed]
    [Google Scholar]
  55. Janke A. Allgemeine Technische Mikrobiologie. 1. Teil. Die Mikroorganismen Steinkopff; 1924
    [Google Scholar]
  56. Emoto Y, Hirose H. Studien über die Thermalflora von Japan. XIX. Thermal Bakterien und Algen aus thermal Quellen von Hatimantai und Yakeyama. Bot Mag Tokyo 1942; 56:332–343 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006003
Loading
/content/journal/ijsem/10.1099/ijsem.0.006003
Loading

Data & Media loading...

Supplements

Loading data from figshare Loading data from figshare
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error