1887

Abstract

A facultative anaerobic, Gram-stain-negative rod-shaped bacterium, designated R, was isolated from the faecal material of a rabbit (). The strain could not be identified using an MALDI Biotyper sirius CA System. The closest matches based on the Bruker library were members of the genera and . However, the score value was in the range of no organism identification possible. Based on pairwise of 16S rRNA gene sequence analysis, the isolate was found to be a member of the family . The highest sequence similarities were found to the sequences of LMG 26273 (98.7 %), NBRC 102595 (98.5 %) and 090008 (98.4 %). Phylogenetic and whole genome analysis demonstrated that strain R represents a novel species within the genus . The predominant cellular fatty acids of strain R were C and products present in summed feature 2 (C) aldehyde, summed feature 3 (C ω6 and/or Cω7) and summed feature 8 (C ω7 and/or C ω6). genome analysis showed the presence of enzymes required for production of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylserine. The G+C content determined from the genome was 54.94 mol %. Based on biochemical, phylogenetic, genotypic and chemotaxonomic criteria, the isolate represents a novel species of the genus for which the name sp. nov. is proposed. The type strain is strain R (=CCUG 76269=ATCC TSD-291).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005968
2023-08-03
2024-05-08
Loading full text...

Full text loading...

References

  1. Tindall BJ. The combination Enterobacter agglomerans is to be cited as Enterobacter agglomerans (Beijerinck 1888) Ewing and Fife 1972 and the combination Pantoea agglomerans is to be cited as Pantoea agglomerans (Beijerinck 1888) Gavini et al. 1989. Opinion 90. Judicial Commission of the International Committee on Systematics of Prokaryotes. Int J Syst Evol Microbiol 2014; 64:3582–3583 [View Article] [PubMed]
    [Google Scholar]
  2. Adeolu M. Genome-based phylogeny and taxonomy of the “Enterobacteriales”: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 2016; 66:5575–5599 [View Article]
    [Google Scholar]
  3. Flores Popoca EO, Miranda García M, Romero Figueroa S, Mendoza Medellín A, Sandoval Trujillo H et al. Pantoea agglomerans in immunodeficient patients with different respiratory symptoms. Sci World J 2012; 2012:156827 [View Article] [PubMed]
    [Google Scholar]
  4. Prakash O, Nimonkar Y, Vaishampayan A, Mishra M, Kumbhare S et al. Pantoea intestinalis sp. nov., isolated from the human gut. Int J Syst Evol Microbiol 2015; 65:3352–3358 [View Article] [PubMed]
    [Google Scholar]
  5. Brady CL, Cleenwerck I, Venter SN, Engelbeen K, De Vos P et al. Emended description of the genus Pantoea, description of four species from human clinical samples, Pantoea septica sp. nov., Pantoea eucrina sp. nov., Pantoea brenneri sp. nov. and Pantoea conspicua sp. nov., and transfer of Pectobacterium cypripedii (Hori 1911) Brenner et al. 1973 emend. Hauben et al. 1998 to the genus as Pantoea cypripedii comb. nov. Int J Syst Evol Microbiol 2010; 60:2430–2440 [View Article] [PubMed]
    [Google Scholar]
  6. Hu FL, Zhou SS, He H, Liu F, Diao XW et al. First report of bacterial leaf spot of Bougainvillea spectabilis caused by Pantoea stewartii subsp indologenes in China. Plant Dis 2023 [View Article] [PubMed]
    [Google Scholar]
  7. Luna E, Lang JM, McClung A, Wamishe Y, Jia Y et al. First report of rice bacterial leaf blight disease caused by Pantoea ananatis in the United States. Plant Dis 2023 [View Article] [PubMed]
    [Google Scholar]
  8. Brady CL, Goszczynska T, Venter SN, Cleenwerck I, De Vos P et al. Pantoea allii sp. nov., isolated from onion plants and seed. Int J Syst Evol Microbiol 2011; 61:932–937 [View Article] [PubMed]
    [Google Scholar]
  9. Rong C, Ma Y, Wang S, Liu Y, Chen S et al. Pantoea hericii sp. nov., isolated from the fruiting bodies of Hericium erinaceus. Curr Microbiol 2016; 72:738–743 [View Article]
    [Google Scholar]
  10. Ma Y, Yin Y, Rong C, Chen S, Liu Y et al. Pantoea pleuroti sp. nov., isolated from the fruiting bodies of Pleurotus eryngii. Curr Microbiol 2016; 72:207–212 [View Article]
    [Google Scholar]
  11. Palmer M, de Maayer P, Poulsen M, Steenkamp ET, van Zyl E et al. Draft genome sequences of Pantoea agglomerans and Pantoea vagans isolates associated with termites. Stand Genomic Sci 2016; 11:23 [View Article] [PubMed]
    [Google Scholar]
  12. Hollis DG, Hickman FW, Fanning GR, Farmer JJ, Weaver RE et al. Tatumella ptyseos gen. nov., sp. nov., a member of the family Enterobacteriaceae found in clinical specimens. J Clin Microbiol 1981; 14:79–88 [View Article] [PubMed]
    [Google Scholar]
  13. Palmer M, Steenkamp ET, Coetzee MPA, Avontuur JR, Chan W-Y et al. Mixta gen. nov., a new genus in the Erwiniaceae. Int J Syst Evol Microbiol 2018; 68:1396–1407 [View Article]
    [Google Scholar]
  14. Tambong JT. Taxogenomics and systematics of the genus Pantoea. Front Microbiol 2019; 10:2463 [View Article]
    [Google Scholar]
  15. Brady C, Cleenwerck I, Venter S, Vancanneyt M, Swings J et al. Phylogeny and identification of Pantoea species associated with plants, humans and the natural environment based on multilocus sequence analysis (MLSA). Syst Appl Microbiol 2008; 31:447–460 [View Article] [PubMed]
    [Google Scholar]
  16. Coenye T, Gevers D, Van de Peer Y, Vandamme P, Swings J. Towards a prokaryotic genomic taxonomy. FEMS Microbiol Rev 2005; 29:147–167 [View Article] [PubMed]
    [Google Scholar]
  17. Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res 2022; 50:D785–D794 [View Article] [PubMed]
    [Google Scholar]
  18. Zong Z. Genome-based taxonomy for bacteria: a recent advance. Trends Microbiol 2020; 28:871–874 [View Article] [PubMed]
    [Google Scholar]
  19. Kato Tanaka Y, Horie N, Mochida K, Yoshida Y, Okugawa E et al. Pantoea theicola sp. nov., isolated from black tea. Int J Syst Evol Microbiol 2015; 65:3313–3319 [View Article]
    [Google Scholar]
  20. Brady CL, Cleenwerck I, van der L, Venter SN, Coutinho TA et al. Pantoea rodasii sp nov. Pantoea rwandensis sp. nov and Pantoea wallisii sp. nov., isolated from Eucalyptus. Int J Syst Evol Microniol 2012; 62:1457–1464 [View Article] [PubMed]
    [Google Scholar]
  21. Soutar CD, Stavrinides J. Phylogenomic analysis of the Erwiniaceae supports reclassification of Kalamiella piersonii to Pantoea piersonii comb. nov. and Erwinia gerundensis to the new genus Duffyella gen. nov. as Duffyella gerundensis comb. nov. Mol Genet Genomics 2022; 297:213–225 [View Article]
    [Google Scholar]
  22. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  23. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33:155
    [Google Scholar]
  24. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article] [PubMed]
    [Google Scholar]
  25. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 1994; 22:4673–4680 [View Article]
    [Google Scholar]
  26. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  28. Takahashi K, Nei M. Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used. Mol Biol Evol 2000; 17:1251–1258 [View Article] [PubMed]
    [Google Scholar]
  29. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  30. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  31. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  32. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2017; 68:461–466 [View Article]
    [Google Scholar]
  33. Perez V, Haywood ZR, McLaughlin RW, Gill SR. Draft genome sequence of Paenibacillus odorifer V, isolated from the fecal material of a rabbit. Microbiol Resour Announc 2022; 11:e00405–22 [View Article]
    [Google Scholar]
  34. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  35. Schmartz GP, Hartung A, Hirsch P, Kern F, Fehlmann T et al. PLSDB: advancing a comprehensive database of bacterial plasmids. Nucleic Acids Res 2022; 50:D273–D278 [View Article]
    [Google Scholar]
  36. Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R et al. The PATRIC Bioinformatics Resource Center: expanding data and analysis capabilities. Nucleic Acids Res 2019D606–D612 [View Article]
    [Google Scholar]
  37. Konstantinidis KT, Tiedje JM. Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol 2007; 10:504–509 [View Article] [PubMed]
    [Google Scholar]
  38. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  39. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  40. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article]
    [Google Scholar]
  41. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  42. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In Technical Note # 101 2001 http://www.midi inc.com/pages/mis_literature
    [Google Scholar]
  43. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  44. Kunitsky C, Osterhout G, Sasser M. Identification of microorganisms using fatty acid methyl ester (FAME) analysis and the Midi Sherlock® microbial identification system. In Encyclopedia Rapid Microbiol Methods River Grove, IL, USA: DHI Publishing LLC; 2006 pp 1–19
    [Google Scholar]
  45. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 2017; 45:D353–D361 [View Article] [PubMed]
    [Google Scholar]
  46. Lawson PA, Sankaranarayanan K, Patel NB, Busse H-J. In-silico chemotaxonomy: a tool for 21st century microbial systematics. In Microbial Systematics and Metagenomics BISMiS 2016 Abstracts Book BISMiS; 2016 p 27
    [Google Scholar]
  47. Patel NB, Sankaranarayanan K, Lawson PA. Development of genomic tools to predict polar lipid production. In Microbial Systematics and Metagenomics BISMiS 2016 Abstracts Book 2016 p 41
    [Google Scholar]
  48. Lawson PA, Patel NB. The strength of chemotaxonomy. In Bridge P, Smith D, Stackebrandt E. eds Trends in the Systematics of Bacteria and Fungi CABI Publishing; 2021 pp 141–167 [View Article]
    [Google Scholar]
  49. Doyle DA, Smith PR, Lawson PA, Tanner RS. Clostridium muellerianum sp. nov., a carbon monoxide-oxidizing acetogen isolated from old hay. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  50. Fotedar R, Caldwell ME, Sankaranarayanan K, Al-Zeyara A, Al-Malki A et al. Ningiella ruwaisensis gen. nov., sp. nov., a member of the family Alteromonadaceae isolated from marine water of the Arabian Gulf. Int J Syst Evol Microbiol 2020; 70:4130–4138 [View Article] [PubMed]
    [Google Scholar]
  51. Fotedar R, Sankaranarayanan K, Caldwell ME, Zeyara A, Al Malki A et al. Reclassification of Facklamia ignava, Facklamia sourekii and Facklamia tabacinasalis as Falseniella ignava gen. nov., comb. nov., Hutsoniella sourekii gen. nov., comb. nov., and Ruoffia tabacinasalis gen. nov., comb. nov., and description of Ruoffia halotolerans sp. nov., isolated from hypersaline Inland Sea of Qatar. Antonie van Leeuwenhoek 2021; 114:1181–1193 [View Article] [PubMed]
    [Google Scholar]
  52. Vandamme P, Sutcliffe I. Out with the old and in with the new: time to rethink twentieth century chemotaxonomic practices in bacterial taxonomy. Int J Syst Evol Microbiol 2021; 71:005127 [View Article] [PubMed]
    [Google Scholar]
  53. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol 2014; 64:316–324 [View Article]
    [Google Scholar]
  54. Whitman WB. The need for change embracing the genome. In Rainey F, Oren A. eds Taxonomy of Prokaryotes Academic Press; pp 1–12
    [Google Scholar]
  55. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  56. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  57. Brady CL, Cleenwerck I, van der Westhuizen L, Venter SN, Coutinho TA et al. Pantoea rodasii sp. nov., Pantoea rwandensis sp. nov. and Pantoea wallisii sp. nov., isolated from Eucalyptus. Int J Syst Evol Microbiol 2012; 62:1457–1464 [View Article] [PubMed]
    [Google Scholar]
  58. Grimont PAD, Grimont F. Genus: Pantoea. In Brenner DJ, Krieg NR, Staley JT. eds Bergey’s Manual of Systematic Bacteriology, Volume Two, The Proteobacteria, Part B, The Gammaproteobacteria, 2nd edn. New York: Springer; 2005 pp 713–720
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005968
Loading
/content/journal/ijsem/10.1099/ijsem.0.005968
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error