1887

Abstract

A Gram-stain-positive, strictly aerobic, rod-shaped actinobacterium, designated strain ZYF776, was isolated from seawater of the Mariana Trench collected at a depth of 4000 m. Results of 16S rRNA gene sequence analysis indicated that strain ZYF776 was a member of the class and closely related to DSM 45188 (member of the order , 94.94 % sequence similarity) and KCTC 33612 (member of the order , 94.46 %). Strain ZYF776 was catalase-positive and oxidase-negative. Growth occurred at 16–37 °C (optimum, 28 °C), in the presence of 0–13 % NaCl (w/v; optimum, 4 %) and at pH 7.0–10.0 (optimum, pH 8.0). Cell-wall hydrolysates of strain ZYF776 contained -diaminopimelic (peptidoglycan type A1γ), with ribose, rhamnose and a smaller amount of xylose as the cell-wall sugars. The major menaquinone was MK-10. The predominant fatty acids (>10 %) were C, C 8 and summed feature 3 (C 7 and/or C 6). The polar lipid profile mainly contained diphosphatidylglycerol, phosphatidylglycerol and phosphoglycolipid. The genomic DNA G+C content of strain ZYF776 was 68.7 mol%. The genome of strain ZYF776 was about 5.61 Mbp in size, which was larger than those of the reference strains DSM45188 (5.56 Mbp) and KCTC 33612 (3.98 Mbp). The average nucleotide identity and digital DNA–DNA hybridization values between ZYF776 and the related strains DSM 45188 and KCTC 33612 were 76.7 and 20.3 % and 75.8 and 20.0 %, respectively. Based on the polyphasic evidence, a novel genus and species with the name gen. nov., sp. nov. is proposed. The type strain is ZYF776 (=JCM 33008=MCCC 1K03555).

Funding
This study was supported by the:
  • Fundamental Research Funds for the Central Universities (Award 202172002)
    • Principle Award Recipient: Xiao-HuaZhang
  • National Key Research and Development Program of China (Award 2018YFE0124100)
    • Principle Award Recipient: Xiao-HuaZhang
  • National Natural Science Foundation of China (Award 41730530)
    • Principle Award Recipient: Xiao-HuaZhang
  • National Natural Science Foundation of China (Award 92251303)
    • Principle Award Recipient: Xiao-HuaZhang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006016
2023-08-23
2024-05-08
Loading full text...

Full text loading...

References

  1. Kurahashi M, Fukunaga Y, Sakiyama Y, Harayama S, Yokota A. Euzebya tangerina gen. nov., sp. nov., a deeply branching marine actinobacterium isolated from the sea cucumber Holothuria edulis, and proposal of Euzebyaceae fam. nov., Euzebyales ord. nov. and Nitriliruptoridae subclassis nov. Int J Syst Evol Microbiol 2010; 60:2314–2319 [View Article] [PubMed]
    [Google Scholar]
  2. Ludwig W, Euzéby J, Schumann P et al. Road map of the phylum Actinobacteria. In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol 5 New York, NY: Springer; 2012 pp 1–28 [View Article]
    [Google Scholar]
  3. Sorokin DY, van Pelt S, Tourova TP, Evtushenko LI. Nitriliruptor alkaliphilus gen. nov., sp. nov., a deep-lineage haloalkaliphilic actinobacterium from soda lakes capable of growth on aliphatic nitriles, and proposal of Nitriliruptoraceae fam. nov. and Nitriliruptorales ord. nov. Int J Syst Evol Microbiol 2009; 59:248–253 [View Article] [PubMed]
    [Google Scholar]
  4. Zhang Y-G, Wang H-F, Yang L-L, Zhou X-K, Zhi X-Y et al. Egibacter rhizosphaerae gen. nov., sp. nov., an obligately halophilic, facultatively alkaliphilic actinobacterium and proposal of Egibaceraceae fam. nov. and Egibacterales ord. nov. Int J Syst Evol Microbiol 2016; 66:283–289 [View Article] [PubMed]
    [Google Scholar]
  5. Zhang Y-G, Chen J-Y, Wang H-F, Xiao M, Yang L-L et al. Egicoccus halophilus gen. nov., sp. nov., a halophilic, alkalitolerant actinobacterium and proposal of Egicoccaceae fam. nov. and Egicoccales ord. nov. Int J Syst Evol Microbiol 2016; 66:530–535 [View Article] [PubMed]
    [Google Scholar]
  6. Yin Q, Zhang L, Song Z-M, Wu Y, Hu Z-L et al. Euzebya rosea sp. nov., a rare actinobacterium isolated from the East China Sea and analysis of two genome sequences in the genus Euzebya. Int J Syst Evol Microbiol 2018; 68:2900–2905 [View Article] [PubMed]
    [Google Scholar]
  7. Jamieson A. The hadal zone. In The Hadal Zone: Life in the Deepest Oceans Cambridge University Press; 2015
    [Google Scholar]
  8. Liu J, Zheng Y, Lin H, Wang X, Li M et al. Proliferation of hydrocarbon-degrading microbes at the bottom of the Mariana Trench. Microbiome 2019; 7:47 [View Article] [PubMed]
    [Google Scholar]
  9. Wang Y, Huang J, Cui G, Nunoura T, Takaki Y et al. Genomics insights into ecotype formation of ammonia‐oxidizing archaea in the deep ocean. Environ Microbiol 2019; 21:716–729 [View Article]
    [Google Scholar]
  10. Xue C-X, Liu J, Lea-Smith DJ, Rowley G, Lin H et al. Insights into the vertical stratification of microbial ecological roles across the deepest seawater column on earth. Microorganisms 2020; 8:1309 [View Article] [PubMed]
    [Google Scholar]
  11. Chen P, Zhou H, Huang Y, Xie Z, Zhang M et al. Revealing the full biosphere structure and versatile metabolic functions in the deepest ocean sediment of the challenger deep. Genome Biol 2021; 22:207 [View Article] [PubMed]
    [Google Scholar]
  12. Zhong H, Lehtovirta-Morley L, Liu J, Zheng Y, Lin H et al. Novel insights into the Thaumarchaeota in the deepest oceans: their metabolism and potential adaptation mechanisms. Microbiome 2020; 8:78 [View Article] [PubMed]
    [Google Scholar]
  13. Zhou Y-L, Mara P, Cui G-J, Edgcomb VP, Wang Y. Microbiomes in the challenger deep slope and bottom-axis sediments. Nat Commun 2022; 13:1515 [View Article] [PubMed]
    [Google Scholar]
  14. Moore E, Arnscheidt A, Krüger A, Strömpl C, Mau M et al. Simplified protocols for the preparation of genomic DNA from bacterial cultures. In Akkermans ADL, van Elsas JD, de Bruin FJ. eds Molecular Microbial Ecology Manual. Vol. 1.6.1, 1st edn. Dordrecht: Kluwer; 1999 pp 1–15
    [Google Scholar]
  15. Zhang Z, Yu C, Wang X, Yu S, Zhang X-H. Arcobacter pacificus sp. nov., isolated from seawater of the South Pacific Gyre. Int J Syst Evol Microbiol 2016; 66:542–547 [View Article] [PubMed]
    [Google Scholar]
  16. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  17. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article] [PubMed]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  19. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  20. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  21. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  22. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  23. Nei M, Kumar S. Molecular Evolution and Phylogenetics New York: Oxford University Press; 2000
    [Google Scholar]
  24. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  25. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol 2019; 20:238 [View Article] [PubMed]
    [Google Scholar]
  26. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  27. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [View Article] [PubMed]
    [Google Scholar]
  28. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al. Corrigendum to: IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol 2020; 37:1530–1534 [View Article] [PubMed]
    [Google Scholar]
  29. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article] [PubMed]
    [Google Scholar]
  30. Minh BQ, Nguyen MAT, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol 2013; 30:1188–1195 [View Article] [PubMed]
    [Google Scholar]
  31. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321 [View Article] [PubMed]
    [Google Scholar]
  32. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article] [PubMed]
    [Google Scholar]
  33. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  34. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods 2016; 8:12–24 [View Article]
    [Google Scholar]
  35. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  36. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  37. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 2016; 428:726–731 [View Article] [PubMed]
    [Google Scholar]
  38. Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol 2021; 38:5825–5829 [View Article] [PubMed]
    [Google Scholar]
  39. Zhang H, Yohe T, Huang L, Entwistle S, Wu P et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2018; 46:W95–W101 [View Article] [PubMed]
    [Google Scholar]
  40. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article] [PubMed]
    [Google Scholar]
  41. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  42. Wayne LG. International Committee on Systematic Bacteriology: announcement of the report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Zentralbl Bakteriol Mikrobiol Hyg A 1988; 268:433–434 [View Article] [PubMed]
    [Google Scholar]
  43. Beveridge TJ. Sampling and staining for light microscopy. In Methods for General and Molecular Microbiology, 3rd edn. American Society of Microbiology; 2007 pp 19–33 [View Article]
    [Google Scholar]
  44. Bernardet J-F, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article] [PubMed]
    [Google Scholar]
  45. Tindall BJ, Sikorski J, Smibert RA et al. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA. eds Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 2007 pp 330–393 [View Article]
    [Google Scholar]
  46. Yoon J-H, Lee K-C, Kho YH, Kang KH, Kim C-J et al. Halomonas alimentaria sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 2002; 52:123–130 [View Article] [PubMed]
    [Google Scholar]
  47. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC News Lett 1990; 20:1–6
    [Google Scholar]
  48. Xie C-H, Yokota A. Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 2003; 49:345–349 [View Article] [PubMed]
    [Google Scholar]
  49. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  50. Komagata K, Suzuki K-I. 4 lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1988; 19:161–207
    [Google Scholar]
  51. Schumann P. Peptidoglycan Structure//Methods in Microbiology. Vol: 38 Academic Press; 2011 pp 101–129
    [Google Scholar]
  52. Tindall BJ, Rosselló-Móra R, Busse H-J, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:249–266 [View Article] [PubMed]
    [Google Scholar]
  53. Schleifer KH. 5 Analysis of the Chemical Composition and Primary Structure of Murein//Methods in Microbiology. Vol: 18 Academic Press; 1985 pp 123–156
    [Google Scholar]
  54. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477 [View Article] [PubMed]
    [Google Scholar]
  55. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article] [PubMed]
    [Google Scholar]
  56. Montero-Calasanz MDC, Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium. Int J Syst Evol Microbiol 2013; 63:4386–4395 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006016
Loading
/content/journal/ijsem/10.1099/ijsem.0.006016
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error