1887

Abstract

Based on genome-wide data, species belonging to the clade including LMG 11547 should be entirely transferred to the genus owing to the nomenclatural priority of the type species . This results in the transfer of 35 species to the genus . The presented data also supports the creation of two new genera since peripherally branching species are distinct from and other related genera. It is proposed that 13 species are transferred to gen. nov. with the type species designated comb. nov. The species is proposed to belong to the genus gen. nov. as the type species comb. nov. The genome-wide analysis was well supported by canonical ordination analysis of Enzyme Commission (EC) codes annotated from genomes via 2. This new approach was performed to assess the conclusions of the genome-based data and reduce possible ambiguity in the taxonomic decision making. Cross-validation of EC code data compared within canonical plots validated the reclassifications and correctly visualized the expected genus-level taxonomic relationships. The approach is complementary to genome-wide methodology and could be used for testing sequence alignment based data across genetically related genera. In addition to the proposed broader reclassifications, invalidly described species ‘’, ‘’, ‘’ and ‘’ are described as sp. nov., sp. nov., sp. nov. and sp. nov., respectively. In addition, is reclassified as comb. nov. The use of combined genome-wide and annotation descriptors compared using canonical ordination clarifies the taxonomy of and its sibling genera and provides another way to evaluate complex taxonomic data.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005991
2023-08-17
2024-09-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/73/8/ijsem005991.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.005991&mimeType=html&fmt=ahah

References

  1. Garrity GM, Bell JA, Lilburn T. Family II. Oxalobacteraceae fam. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. eds Bergey’s Manual of Systematic Bacteriology(The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria), 2nd edn. vol 2 New York: Springer; 2005 p 623
    [Google Scholar]
  2. Lu H, Song D, Deng T, Mei C, Xu M. Duganella vulcania sp. nov., Rugamonas fusca sp. nov., Rugamonas brunnea sp. nov. and Rugamonas apoptosis sp. nov., isolated from subtropical streams, and phylogenomic analyses of the genera Janthinobacterium, Duganella, Rugamonas, Pseudoduganella and Massilia. Int J Syst Evol Microbiol 2022; 72:5407 [View Article] [PubMed]
    [Google Scholar]
  3. Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res 2022; 50:D785–D794 [View Article] [PubMed]
    [Google Scholar]
  4. Tsai M-H, Liu Y-Y, Soo V-W, Chen C-C. A new genome-to-genome comparison approach for large-scale revisiting of current microbial taxonomy. Microorganisms 2019; 7:161 [View Article] [PubMed]
    [Google Scholar]
  5. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  6. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [View Article] [PubMed]
    [Google Scholar]
  7. Nicholson AC, Gulvik CA, Whitney AM, Humrighouse BW, Bell ME et al. Division of the genus Chryseobacterium: observation of discontinuities in amino acid identity values, a possible consequence of major extinction events, guides transfer of nine species to the genus Epilithonimonas, eleven species to the genus Kaistella, and three species to the genus Halpernia gen. nov., with description of Kaistella daneshvariae sp. nov. and Epilithonimonas vandammei sp. nov. derived from clinical specimens. Int J Syst Evol Microbiol 2020; 70:4432–4450 [View Article] [PubMed]
    [Google Scholar]
  8. Drula E, Garron M-L, Dogan S, Lombard V, Henrissat B et al. The carbohydrate-active enzyme database: functions and literature. Nucleic Acids Res 2022; 50:D571–D577 [View Article] [PubMed]
    [Google Scholar]
  9. Anderson MJ, Willis TJ. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 2003; 84:511–525 [View Article]
    [Google Scholar]
  10. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  11. Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R et al. The PATRIC bioinformatics resource center: expanding data and analysis capabilities. Nucleic Acids Res 2020; 48:D606–D612 [View Article] [PubMed]
    [Google Scholar]
  12. Törönen P, Holm L. PANNZER-a practical tool for protein function prediction. Protein Sci 2022; 31:118–128 [View Article] [PubMed]
    [Google Scholar]
  13. Orthová I, Kämpfer P, Glaeser SP, Kaden R, Busse H-J. Massilia norwichensis sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2015; 65:56–64 [View Article] [PubMed]
    [Google Scholar]
  14. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  15. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ 2016 [View Article]
    [Google Scholar]
  16. Lemoine F, Correia D, Lefort V, Doppelt-Azeroual O, Mareuil F et al. NGPhylogeny.fr: new generation phylogenetic services for non-specialists. Nucleic Acids Res 2019; 47:W260–W265 [View Article] [PubMed]
    [Google Scholar]
  17. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article] [PubMed]
    [Google Scholar]
  18. Letunic I, Bork P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49:W293–W296 [View Article] [PubMed]
    [Google Scholar]
  19. Falda M, Toppo S, Pescarolo A, Lavezzo E, Di Camillo B et al. Argot2: a large scale function prediction tool relying on semantic similarity of weighted Gene ontology terms. BMC Bioinformatics 2012; 13:S14 [View Article] [PubMed]
    [Google Scholar]
  20. Zhang H, Yohe T, Huang L, Entwistle S, Wu P et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2018; 46:W95–W101 [View Article] [PubMed]
    [Google Scholar]
  21. Pallen MJ, Rodriguez-R LM, Alikhan NF. Naming the unnamed: over 65,000 candidatus names for unnamed archaea and bacteria in the genome taxonomy database. Int J Syst Evol Microbiol 2022; 72:005482 [View Article]
    [Google Scholar]
  22. Shen L, Liu Y, Gu Z, Xu B, Wang N et al. Massilia eurypsychrophila sp. nov. a facultatively psychrophilic bacteria isolated from ice core. Int J Syst Evol Microbiol 2015; 65:2124–2129 [View Article] [PubMed]
    [Google Scholar]
  23. Raths R, Peta V, Bücking H. Massilia arenosa sp. nov., isolated from the soil of a cultivated maize field. Int J Syst Evol Microbiol 2020; 70:3912–3920 [View Article] [PubMed]
    [Google Scholar]
  24. Bowman JP, Sly LI, Hayward AC, Spiegel Y, Stackebrandt E. Telluria mixta (Pseudomonas mixta Bowman Sly and Hayward 1988) gen nov. comb nov. and Telluria chitinolytica sp. nov. soil-dwelling organisms which actively degrade polysaccharides. Int J Syst Bacteriol 1993; 43:120–124 [View Article] [PubMed]
    [Google Scholar]
  25. La Scola B, Birtles RJ, Mallet MN, Raoult D. Massilia timonae gen. nov., sp. nov., isolated from blood of an immunocompromised patient with cerebellar lesions. J Clin Microbiol 1998; 36:2847–2852 [View Article] [PubMed]
    [Google Scholar]
  26. Bowman JP, Sly LI, Hayward AC. Pseudomonas mixta sp. nov., a bacterium from soil with degradative activity on a variety of complex polysaccharides. Syst Appl Microbiol 1988; 11:53–59 [View Article]
    [Google Scholar]
  27. Parker CT, Tindall BJ, Garrity GM. International code of nomenclature of prokaryotes: prokaryotic code (2008 revision). Int J Syst Evol Microbiol 2019; 69:S1–S111 [View Article] [PubMed]
    [Google Scholar]
  28. Du C, Li C, Cao P, Li T, Du D et al. Massilia cellulosiltytica sp. nov., a novel cellulose-degrading bacterium isolated from Rhizosphere soil of rice (Oryza Sativa L.) and its whole genome analysis. Antonie van Leeuwenhoek 2021; 114:1529–1540
    [Google Scholar]
  29. Son J, Lee H, Kim M, Kim D-U, Ka J-O. Massilia aromaticivorans sp. nov., a BTEX degrading bacterium isolated from arctic soil. Curr Microbiol 2021; 78:2143–2150 [View Article] [PubMed]
    [Google Scholar]
  30. Dahal RH, Chaudhary DK, Kim J. Genome insight and description of antibiotic producing Massilia antibiotica sp. nov., isolated from oil-contaminated soil. Sci Rep 2021; 11:12864 [View Article] [PubMed]
    [Google Scholar]
  31. Du J, Yin CS. Massilia humi sp. nov. isolated from soil in Incheon, South Korea. Arch Microbiol 2016; 198:363–367 [View Article] [PubMed]
    [Google Scholar]
  32. Konishi M, Sugawara K, Hanada M, Tomita K, Tomatsu K et al. Empedopeptin (BMY-28117), a new depsipeptide antibiotic I Production, isolation and properties. J Antibiot 1984; 37:949–957 [View Article]
    [Google Scholar]
  33. Miess H, Arlt P, Apel AK, Weber T, Nieselt K et al. The draft whole-genome sequence of the antibiotic producer Empedobacter haloabium ATCC 31962 provides indications for Its taxonomic reclassification. Microbiol Resour Announc 2019; 8:e01120-19 [View Article] [PubMed]
    [Google Scholar]
  34. Ho S-T, Ho Y-N, Lin C, Hsu W-C, Lee H-J et al. Integrated omics strategy reveals cyclic lipopeptides empedopeptins from Massilia sp. YMA4 and their biosynthetic pathway. Mar Drugs 2021; 19:209 [View Article] [PubMed]
    [Google Scholar]
  35. Hedlund BP, Chuvochina M, Hugenholtz P, Konstantinidis KT, Murray AE et al. SeqCode: a nomenclatural code for prokaryotes described from sequence data. Nat Microbiol 2022; 7:1702–1708 [View Article] [PubMed]
    [Google Scholar]
  36. Kämpfer P, Irgang R, Busse H-J, Poblete-Morales M, Kleinhagauer T et al. Pseudoduganella danionis sp. nov., isolated from zebrafish (Danio rerio). Int J Syst Evol Microbiol 2016; 66:4671–4675 [View Article] [PubMed]
    [Google Scholar]
  37. Lu H-B, Cai Z-P, Yang Y-G, Xu M-Y. Duganella rivus sp. nov., Duganella fentianensis sp. nov., Duganella qianjiadongensis sp. nov. and Massilia guangdongensis sp. nov., isolated from subtropical streams in China and reclassification of all species within genus Pseudoduganella. Antonie van Leeuwenhoek 2020; 113:1713–1714 [View Article] [PubMed]
    [Google Scholar]
  38. Jeon D, Kim IS, Choe H, Kim J-S, Lee SD. Duganella aceris sp. nov., isolated from tree sap and proposal to transfer of Rugamonas aquatica and Rugamonas rivuli to the genus Duganella as Duganella aquatica comb. nov., with the emended description of the genus Rugamonas. Arch Microbiol 2021; 203:2843–2852 [View Article] [PubMed]
    [Google Scholar]
  39. Gong X, Skrivergaard S, Korsgaard BS, Schreiber L, Marshall IPG et al. High quality draft genome sequence of Janthinobacterium psychrotolerans sp. nov., isolated from a frozen freshwater pond. Stand Genomic Sci 2017; 12:8 [View Article] [PubMed]
    [Google Scholar]
  40. Jung WJ, Kim SW, Giri SS, Kim HJ, Kim SG et al. Janthinobacterium tructae sp. nov., isolated from kidney of rainbow trout (Oncorhynchus mykiss). Pathogens 2021; 10:229 [View Article]
    [Google Scholar]
  41. Ambrožič Avguštin J, Žgur Bertok D, Kostanjšek R, Avguštin G. Isolation and characterization of a novel violacein-like pigment producing psychrotrophic bacterial species Janthinobacterium svalbardensis sp. nov. Antonie van Leeuwenhoek 2013; 103:763–769 [View Article] [PubMed]
    [Google Scholar]
  42. Salzberg SL. Next-generation genome annotation: we still struggle to get it right. Genome Biol 2019; 20:92 [View Article] [PubMed]
    [Google Scholar]
  43. Morgat A, Lombardot T, Coudert E, Axelsen K, Batista Neto T et al. The Uniprot consortium, enzyme annotation in Uniprotkb using Rhea. Bioinformatics 2020; 36:1896–1901 [View Article]
    [Google Scholar]
  44. Lee C-M, Weon H-Y, Hong S-B, Jeon Y-A, Schumann P et al. Cellulomonas aerilata sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2008; 58:2925–2929 [View Article] [PubMed]
    [Google Scholar]
  45. Altankhuu K, Kim J. Massilia solisilvae sp. nov., Massilia terrae sp. nov. and Massilia agilis sp. nov. isolated from forest soil in South Korea by using a newly developed culture method. Int J Syst Evol Microbiol 2017; 67:3026–3032 [View Article] [PubMed]
    [Google Scholar]
  46. Chaudhary DK, Kim J. Massilia agri sp. nov., isolated from reclaimed grassland soil. Int J Syst Evol Microbiol 2017; 67:2696–2703 [View Article] [PubMed]
    [Google Scholar]
  47. Kämpfer P, Lodders N, Martin K, Falsen E. Revision of the genus Massilia La Scola et al. 2000, with an emended description of the genus and inclusion of all species of the genus Naxibacter as new combinations, and proposal of Massilia consociata sp. nov. Int J Syst Evol Microbiol 2011; 61:1528–1533 [View Article] [PubMed]
    [Google Scholar]
  48. Xu P, Li W-J, Tang S-K, Zhang Y-Q, Chen G-Z et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family “Oxalobacteraceae” isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article] [PubMed]
    [Google Scholar]
  49. Zhang B, Yang R, Zhang G, Zhang D, Zhang W et al. Massilia arenae sp. nov., isolated from sand soil in the Qinghai-Tibetan Plateau. Int J Syst Evol Microbiol 2020; 70:2435–2439 [View Article] [PubMed]
    [Google Scholar]
  50. Singh H, Du J, Won K, Yang J-E, Yin C et al. Massilia arvi sp. nov., isolated from fallow-land soil previously cultivated with Brassica oleracea, and emended description of the genus Massilia. Int J Syst Evol Microbiol 2015; 65:3690–3696 [View Article] [PubMed]
    [Google Scholar]
  51. Gallego V, Sánchez-Porro C, García MT, Ventosa A. Massilia aurea sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 2006; 56:2449–2453 [View Article] [PubMed]
    [Google Scholar]
  52. Zul D, Wanner G, Overmann J. Massilia brevitalea sp. nov., a novel betaproteobacterium isolated from lysimeter soil. Int J Syst Evol Microbiol 2008; 58:1245–1251 [View Article] [PubMed]
    [Google Scholar]
  53. Lee H, Kim DU, Park S, Yoon JH, Ka JO. Massilia chloroacetimidivorans sp. nov., a chloroacetamide herbicide-degrading bacterium isolated from soil. Antonie van Leeuwenhoek 2017; 110:751–758 [View Article] [PubMed]
    [Google Scholar]
  54. Heo J, Won M, Lee D, Han B-H, Hong S-B et al. Duganella dendranthematis sp. nov. and Massilia forsythiae sp. nov., isolated from flowers. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  55. Kämpfer P, Falsen E, Busse H-J. Naxibacter varians sp. nov. and Naxibacter haematophilus sp. nov., and emended description of the genus Naxibacter. Int J Syst Evol Microbiol 2008; 58:1680–1684 [View Article] [PubMed]
    [Google Scholar]
  56. Peta V, Raths R. Massilia horti sp. nov. and Noviherbaspirillum arenae sp. nov., 889 two novel soil bacteria of the Oxalobacteraceae. Int J Syst Evol Microbiol 2021; 71:4765 [View Article] [PubMed]
    [Google Scholar]
  57. Weon H-Y, Yoo S-H, Kim S-J, Kim Y-S, Anandham R et al. Massilia jejuensis sp. nov. and Naxibacter suwonensis sp. nov., isolated from air samples. Int J Syst Evol Microbiol 2010; 60:1938–1943 [View Article] [PubMed]
    [Google Scholar]
  58. Kim J. Massilia kyonggiensis sp. nov., isolated from forest soil in Korea. J Microbiol 2014; 52:378–383 [View Article] [PubMed]
    [Google Scholar]
  59. Zhao X, Li X, Qi N, Gan M, Pan Y et al. Massilia neuiana sp. nov., isolated from wet soil. Int J Syst Evol Microbiol 2017; 67:4943–4947 [View Article] [PubMed]
    [Google Scholar]
  60. Weon H-Y, Kim B-Y, Hong S-B, Jeon Y-A, Koo B-S et al. Massilia niabensis sp. nov. and Massilia niastensis sp. nov., isolated from air samples. Int J Syst Evol Microbiol 2009; 59:1656–1660 [View Article] [PubMed]
    [Google Scholar]
  61. Kämpfer P, Lodders N, Martin K, Falsen E. Massilia oculi sp. nov., isolated from a human clinical specimen. Int J Syst Evol Microbiol 2012; 62:364–369 [View Article] [PubMed]
    [Google Scholar]
  62. Zheng B-X, Bi Q-F, Hao X-L, Zhou G-W, Yang X-R. Massilia phosphatilytica sp. nov., a phosphate solubilizing bacteria isolated from a long-term fertilized soil. Int J Syst Evol Microbiol 2017; 67:2514–2519 [View Article] [PubMed]
    [Google Scholar]
  63. Altankhuu K, Kim J. Massilia pinisoli sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2016; 66:3669–3674 [View Article] [PubMed]
    [Google Scholar]
  64. Yang R, Zhou D, Wang Q, Peng W, Gong W et al. Massilia puerhi sp. nov., isolated from soil of Pu-erh tea cellar. Int J Syst Evol Microbiol 2021; 71:4992 [View Article] [PubMed]
    [Google Scholar]
  65. Feng GD, Yang SZ, Li HP, Zhu HH. Massilia putida sp. nov., a dimethyl disulfide-producing bacterium isolated from wolfram mine tailing. Int J Syst Evol Microbiol 2016; 66:50–55 [View Article] [PubMed]
    [Google Scholar]
  66. Li C, Cao P, Du C, Zhang X, Bing H et al. Massilia rhizosphaerae sp. nov., a rice-associated rhizobacterium with antibacterial activity against Ralstonia solanacearum. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  67. Du Y, Yu X, Wang G. Massilia tieshanensis sp. nov., isolated from mining soil. Int J Syst Evol Microbiol 2012; 62:2356–2362 [View Article] [PubMed]
    [Google Scholar]
  68. Shen L, Liu Y, Wang N, Yao T, Jiao N et al. Massilia yuzhufengensis sp. nov., isolated from an ice core. Int J Syst Evol Microbiol 2013; 63:1285–1290 [View Article] [PubMed]
    [Google Scholar]
  69. Sedláček I, Holochová P, Busse H-J, Koublová V, Králová S et al. Characterisation of Waterborne Psychrophilic Massilia isolates with Violacein production and description of Massilia Antarctica SP. Nov. Microorganisms 2022; 10:704
    [Google Scholar]
  70. Holochova P, Maslanova I, Sedlacek I, Svec P, Kralova S et al. Description of Massilia rubra sp. nov., Massilia aquatica sp. nov., Massilia mucilaginosa sp. nov., Massilia frigida sp. nov., and one Massilia genomospecies isolated from Antarctic streams, lakes and regoliths. Syst Appl Microbiol 2020; 43:126112
    [Google Scholar]
  71. Yang E, Zhao M, Li S, Wang Y, Sun L et al. Massilia atriviolacea sp. nov., a dark purple-pigmented bacterium isolated from soil. Int J Syst Evol Microbiol 2019; 69:2135–2141 [View Article] [PubMed]
    [Google Scholar]
  72. Zhu H-Z, Zhang Z-F, Zhou N, Jiang C-Y, Wang B-J et al. Bacteria and metabolic potential in karst caves revealed by intensive bacterial cultivation and genome assembly.. Appl Environ Microbiol 2021; 87:e0057721 [View Article] [PubMed]
    [Google Scholar]
  73. Gu Z, Liu Y, Xu B, Wang N, Jiao N et al. Massilia glaciei sp. nov., isolated from the Muztagh Glacier. Int J Syst Evol Microbiol 2017; 67:4075–4079 [View Article] [PubMed]
    [Google Scholar]
  74. Dahal RH, Chaudhary DK, Kim D-U, Kim J. Cold-shock gene cspC in the genome of Massilia polaris sp. nov. revealed cold-adaptation. Antonie van Leeuwenhoek 2021; 114:1275–1284 [View Article] [PubMed]
    [Google Scholar]
  75. Guo B, Liu Y, Gu Z, Shen L, Liu K et al. Massilia psychrophila sp. nov., isolated from an ice core. Int J Syst Evol Microbiol 2016; 66:4088–4093 [View Article] [PubMed]
    [Google Scholar]
  76. Baek JH, Baek W, Ruan W, Jung HS. Massilia soli sp. nov. isolated from soil. Int J Syst Evol Microbiol 2022; 72: [View Article] [PubMed]
    [Google Scholar]
  77. Wang H, Zhang X, Wang S, Zhao B, Lou K et al. Massilia violaceinigra sp. nov., a novel purple-pigmented bacterium isolated from glacier permafrost. Int J Syst Evol Microbiol 2018; 68:2271–2278 [View Article] [PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.005991
Loading
/content/journal/ijsem/10.1099/ijsem.0.005991
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error