1887

Abstract

A Gram-stain-positive, rod-shaped, endospore-forming, aerobic bacterial strain, designated ZS110521, was isolated from high-temperature , a starter for production of Chinese Jiang-flavour and was characterised by polyphasic taxonomy. This novel isolate grew in the presence of 0–20 % (w/v) NaCl, at pH 6.0–9.0 and 20–50 °C; optimum growth was observed with 8–10 % (w/v) NaCl, at pH 7.0 and 37 °C. A comparative analysis of the 16S rRNA gene sequence (1460 bp) of ZS110521 revealed that it displayed the highest similarity to WD4L-1 (95.5 %), followed by SL-MJ1 (95.4 %) and BH260 (95.2 %). ANI and dDDH values between ZS110521 and other strains of species of the genus were less than 78 and 28 %, respectively. The predominant cellular fatty acids (> 10 %) of ZS110521 were anteiso-C (37.8 %), anteiso-C (28.1 %) and iso-C (15.5 %). The respiratory quinone was identified as menaquinone-7 (MK-7) and the major polar lipids were diphosphatidylglycerol and phosphatidylglycerol. The polyphasic taxonomic data and the results of chemotaxonomic analysis confirmed that ZS110521 represents a novel species, for which the name sp. nov. is proposed. The type strain of this proposed species is ZS110521 (=CGMCC 1.19456 =JCM 35213).

Funding
This study was supported by the:
  • National Science and Technology Fundamental Resources Investigation Program of China (Award 2021FY100900)
    • Principle Award Recipient: Zhen-MingLu
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005962
2023-08-03
2024-05-08
Loading full text...

Full text loading...

References

  1. Yoon JH, Kang KH, Park YH. Lentibacillus salicampi gen. nov., sp. nov., a moderately halophilic bacterium isolated from a salt field in Korea. Int J Syst Evol Microbiol 2002; 52:2043–2048 [View Article] [PubMed]
    [Google Scholar]
  2. Parte AC. LPSN – list of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article] [PubMed]
    [Google Scholar]
  3. Yuan S, Ren P, Liu J, Xue Y, Ma Y et al. Lentibacillus halodurans sp. nov., a moderately halophilic bacterium isolated from a salt lake in Xin-Jiang, China. Int J Syst Evol Microbiol 2007; 57:485–488 [View Article] [PubMed]
    [Google Scholar]
  4. Lim J-M, Jeon CO, Song S-M, Lee J-C, Ju YJ et al. Lentibacillus lacisalsi sp. nov., a moderately halophilic bacterium isolated from a saline lake in China. Int J Syst Evol Microbiol 2005; 55:1805–1809 [View Article] [PubMed]
    [Google Scholar]
  5. Sánchez-Porro C, Amoozegar MA, Fernandez AB, Babavalian Fard H, Ramezani M et al. Lentibacillus persicus sp. nov., a moderately halophilic species isolated from a saline lake. Int J Syst Evol Microbiol 2010; 60:1407–1412 [View Article] [PubMed]
    [Google Scholar]
  6. Lee JC, Li WJ, Xu LH, Jiang CL, Kim CJ. Lentibacillus salis sp. nov., a moderately halophilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol 2008; 58:1838–1843 [View Article] [PubMed]
    [Google Scholar]
  7. Oh YJ, Kim JY, Jo HE, Park HK, Lim SK et al. Lentibacillus cibarius sp. nov., isolated from kimchi, a Korean fermented food. J Microbiol 2020; 58:387–394 [View Article] [PubMed]
    [Google Scholar]
  8. Jung WY, Lee SH, Jin HM, Jeon CO. Lentibacillus garicola sp. nov., isolated from myeolchi-aekjeot, a Korean fermented anchovy sauce. Antonie Van Leeuwenhoek 2015; 107:1569–1576 [View Article] [PubMed]
    [Google Scholar]
  9. Tanasupawat S, Pakdeeto A, Namwong S, Thawai C, Kudo T et al. Lentibacillus halophilus sp. nov., from fish sauce in Thailand. Int J Syst Evol Microbiol 2006; 56:1859–1863 [View Article] [PubMed]
    [Google Scholar]
  10. Jung MJ, Roh SW, Kim MS, Bae JW. Lentibacillus jeotgali sp. nov., a halophilic bacterium isolated from traditional Korean fermented seafood. Int J Syst Evol Microbiol 2010; 60:1017–1022 [View Article] [PubMed]
    [Google Scholar]
  11. Namwong S, Tanasupawat S, Smitinont T, Visessanguan W, Kudo T et al. Isolation of Lentibacillus salicampi strains and Lentibacillus juripiscarius sp. nov. from fish sauce in Thailand. Int J Syst Evol Microbiol 2005; 55:315–320 [View Article] [PubMed]
    [Google Scholar]
  12. Pakdeeto A, Tanasupawat S, Thawai C, Moonmangmee S, Kudo T et al. Lentibacillus kapialis sp. nov., from fermented shrimp paste in Thailand. Int J Syst Evol Microbiol 2007; 57:364–369 [View Article] [PubMed]
    [Google Scholar]
  13. Oh YJ, Lee H-W, Lim SK, Kwon M-S, Lee J et al. Lentibacillus kimchii sp. nov., an extremely halophilic bacterium isolated from kimchi, a Korean fermented vegetable. Antonie van Leeuwenhoek 2016; 109:869–876 [View Article] [PubMed]
    [Google Scholar]
  14. Booncharoen A, Visessanguan W, Kuncharoen N, Yiamsombut S, Santiyanont P et al. Lentibacillus lipolyticus sp. nov., a moderately halophilic bacterium isolated from shrimp paste (Ka-pi). Int J Syst Evol Microbiol 2019; 69:3529–3536 [View Article] [PubMed]
    [Google Scholar]
  15. Lee SY, Choi WY, Oh TK, Yoon JH. Lentibacillus salinarum sp. nov., isolated from a marine solar saltern in Korea. Int J Syst Evol Microbiol 2008; 58:45–49 [View Article] [PubMed]
    [Google Scholar]
  16. Wang Y, Jiang G-Q, Lin H-P, Sun P, Zhang H-Y et al. Lentibacillus saliphilus. sp. nov., a moderately halophilic bacterium isolated from a saltern in Korea. Arch Microbiol 2021; 203:621–627 [View Article] [PubMed]
    [Google Scholar]
  17. Guo LY, Wang NN, Wang XQ, Chen GJ, du ZJ et al. Lentibacillus sediminis sp. nov., isolated from a marine saltern. Int J Syst Evol Microbiol 2017; 67:3946–3950 [View Article] [PubMed]
    [Google Scholar]
  18. Wang J-L, Ma K-D, Wang Y-W, Wang H-M, Li Y-B et al. Lentibacillus amyloliquefaciens sp. nov., a halophilic bacterium isolated from saline sediment sample. Antonie van Leeuwenhoek 2016; 109:171–178 [View Article] [PubMed]
    [Google Scholar]
  19. Jeon CO, Lim J-M, Lee J-C, Lee GS, Lee J-M et al. Lentibacillus salarius sp. nov., isolated from saline sediment in China, and emended description of the genus Lentibacillus. Int J Syst Evol Microbiol 2005; 55:1339–1343 [View Article] [PubMed]
    [Google Scholar]
  20. Zheng XW, Han BZ. Baijiu (白酒), Chinese liquor: history, classification and manufacture. J Ethnic Foods 2016; 3:19–25 [View Article]
    [Google Scholar]
  21. Wang Y, Cai W, Wang W, Shu N, Zhang Z et al. Analysis of microbial diversity and functional differences in different types of high-temperature Daqu. Food Sci Nutr 2021; 9:1003–1016 [View Article] [PubMed]
    [Google Scholar]
  22. Logan NA, Berge O, Bishop AH, Busse H-J, De Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59:2114–2121 [View Article] [PubMed]
    [Google Scholar]
  23. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  24. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article] [PubMed]
    [Google Scholar]
  25. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  26. Naruya S, Masatoshi N. The neighbor-joining method: a new method for reconstructing phylogenetic tree. Mol Biol Evol 1987406–425
    [Google Scholar]
  27. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  28. Kumar S. A stepwise algorithm for finding minimum evolution trees. Mol Biol Evol 1996; 13:584–593 [View Article] [PubMed]
    [Google Scholar]
  29. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  30. Xu P, Li WJ, Tang SK et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family “Oxalobacteraceae” isolated from China. Int J Syst Evol Microbiol 2005; 55(3):1149–1153 [View Article] [PubMed]
    [Google Scholar]
  31. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria London: Cambridge University Press; 1965
    [Google Scholar]
  32. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–208
    [Google Scholar]
  33. Xu P-X, Chai L-J, Qiu T, Zhang X-J, Lu Z-M et al. Clostridium fermenticellae sp. nov., isolated from the mud in a fermentation cellar for the production of the Chinese liquor, baijiu. Int J Syst Evol Microbiol 2019; 69:859–865 [View Article] [PubMed]
    [Google Scholar]
  34. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M et al. Versatile and open software for comparing large genomes. Genome Biol 2004; 5:R12 [View Article] [PubMed]
    [Google Scholar]
  35. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R et al. Circos: an information aesthetic for comparative genomics. Genome Res 2009; 19:1639–1645 [View Article] [PubMed]
    [Google Scholar]
  36. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [View Article] [PubMed]
    [Google Scholar]
  37. Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 2022; 50:D801–D807 [View Article] [PubMed]
    [Google Scholar]
  38. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article] [PubMed]
    [Google Scholar]
  39. Emms DM, Kelly S. Orthofinder2: fast and accurate phylogenomic orthology analysis from gene sequences. BioRxiv 2018; 466201:
    [Google Scholar]
  40. Li L, Stoeckert CJ, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 2003; 13:2178–2189 [View Article] [PubMed]
    [Google Scholar]
  41. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article] [PubMed]
    [Google Scholar]
  42. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005962
Loading
/content/journal/ijsem/10.1099/ijsem.0.005962
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error