-
Volume 71,
Issue 4,
2021
Volume 71, Issue 4, 2021
- Notification List
-
- New Taxa
-
- Actinobacteria
-
-
Protaetiibacter larvae sp. nov. and Agromyces intestinalis sp. nov., isolated from the gut of larvae of Protaetia brevitarsis seulensis, reclassification of Lysinimonas yzui as Pseudolysinimonas yzui comb. nov. and emended description of the genus Pseudolysinimonas
More LessTwo bacterial strains, FWR-8T and CFWR-9T, were isolated from the gut of larvae of Protaetia brevitarsis seulensis that were raised at the National Institute of Agricultural Sciences, Wanju-gun, Republic of Korea. Both strains were strictly aerobic, Gram-stain-positive and non-motile. Strain FWR-8T possessed the highest sequence similarity (98.7 %) to that of Protaetiibacter intestinalis 2DFWR-13T and the phylogenetic tree revealed that strain FWR-8T formed a cluster with Ptb. intestinalis 2DFWR-13T. Pseudolysinimonas kribbensis MSL-13T and Lysinimonas yzui N7XX-4T shared a high 16S rRNA gene sequence similarity (97.8 %) and formed a cluster adjacent to the cluster that included Ptb. intestinalis 2DFWR-13T. The 16S rRNA gene sequence of strain CFWR-9T exhibited the highest similarity (97.7 %) to that of Agromyces binzhouensis OAct353T and the phylogenetic tree indicated that strain CFWR-9T formed one independent cluster with A. binzhouensis OAct353T that was within the radius of the genus Agromyces . The peptidoglycan type, major fatty acids, major menaquinones and total polar lipids of strain FWR-8T were characterized as type B1, iso-C16 : 0, anteiso-C15 : 0 and anteiso-C17 : 0, MK-15, MK-16 and MK-14, and diphosphatidylglycerol, phosphatidylglycerol, two unidentified glycolipids and one unidentified lipid, respectively. Those from strain CFWR-9T were type B1, iso-C16 : 0, anteiso-C15 : 0 and anteiso-C17 : 0, MK-11, MK-12 and MK-10, and diphosphatidylglycerol, phosphatidylglycerol, two unidentified glycolipids and one unidentified lipid, respectively. Based on the phenotypic and genotypic data, strains FWR-8T and CFWR-9T each represent a novel species within the genera Protaetiibacter and Agromyces , respectively. For these species, the names Protaetiibacter larvae sp. nov. and Agromyces intestinalis sp. nov. have been proposed, with the type strains FWR-8T (=KACC 19322T=NBRC 113051T) and CFWR-9T (=KACC 19306T=NBRC 113046T), respectively. Our results also justify a reclassification of Lysinimonas yzui as Pseudolysinimonas yzui comb. nov. and an emended description of the genus Pseudolysinimonas isprovided.
-
-
-
Reclassification of Haloactinobacterium glacieicola as Occultella glacieicola gen. nov., comb. nov., of Haloactinobacterium album as Ruania alba comb. nov, with an emended description of the genus Ruania, recognition that the genus names Haloactinobacterium and Ruania are heterotypic synonyms and description of Occultella aeris sp. nov., a halotolerant isolate from surface soil sampled at an ancient copper smelter
In the course of screening the surface soils of ancient copper mines and smelters (East Harz, Germany) an aerobic, non-motile and halotolerant actinobacterium forming small rods or cocci was isolated. The strain designated F300T developed creamy to yellow colonies on tryptone soy agar and grew optimally at 28 °C, pH 7–8 and with 0.5–2 % (m/v) NaCl. Its peptidoglycan was of type A4α l-Lys–l-Glu (A11.54). The menaquinone profile was dominated by MK-8(II, III-H4) and contained minor amounts of MK-8(H2), MK-8(H6) and MK-9(H4). The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, mono and diacylated phosphatidylinositol dimannosides, and components that were not fully characterized, including two phospholipids, two glycolipids and an uncharacterized lipid. Major whole-cell sugars were rhamnose and ribose. The fatty acid profile contained mainly iso and anteiso branched fatty acids (anteiso-C15 : 0, iso-C14 : 0) and aldehydes/dimethylacetals (i.e. not fatty acids). Sequence analysis of its genomic DNA and subsequent analysis of the data placed the isolate in the group currently defined by members of the genera Ruania and Haloactinobacterium (family Ruaniaceae , order Micrococcales ) as a sister taxon to the previously described species Haloactinobacterium glacieicola , sharing an average nucleotide identity and average amino acid identity values of 85.3 and 85.7 %, respectively. Genotypic and chemotaxonomic analyses support the view that strain F300T (=DSM 108350T=CIP 111667T) is the type strain of a new genus and new species for which the name Occultella aeris gen. nov., sp. nov. is proposed. Based on revised chemotaxonomic and additional genome based data, it is necessary to discuss and evaluate the results in the light of the classification and nomenclature of members of the family Ruaniaceae , i.e. the genera Haloactinobacterium and Ruania . Consequently, the reclassification of Haloactinobacterium glacieicola as Occultella glacieicola comb. nov. and Haloactinobacterium album as Ruania alba comb. nov., with an emended description of the genus Ruania are proposed.
-
-
-
Brevilactibacter coleopterorum sp. nov., isolated from the intestine of the dark diving beetle Hydrophilus acuminatus, and Weissella coleopterorum sp. nov., isolated from the intestine of the diving beetle Cybister lewisianus
A polyphasic taxonomic approach was used to characterize two novel bacterial strains, designated as HDW11T and HDW19T, isolated from intestine samples of the dark diving beetle Hydrophilus acuminatus and the diving beetle Cybister lewisianus, respectively. Both isolates were Gram-stain-positive, facultatively anaerobic and non-motile. Strain HDW11T grew optimally at 30 °C, pH 8 and in the presence of 1% (w/v) NaCl. Strain HDW19T grew optimally at 25 °C, pH 7 and in the presence of 0.3% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences and genome sequences revealed that strain HDW11T is a member of the genus Brevilactibacter and is closely related to Brevilactibacter flavus VG341T [with 97.9% 16S rRNA sequence identity and 79.1% average nucleotide identity (ANI)], and that strain HDW19T belongs to the genus Weissella and is closely related to W. koreensis KCTC 3621T (with 98.9% 16S rRNA sequence identity and 79.5% ANI). The major cellular fatty acids of strains HDW11T and HDW19T were C18:1 ω9c and anteiso-C15:0, respectively. The sole respiratory quinone of strain HDW11T was MK-9 (H4). The major polar lipid components of strain HDW11T were diphosphatidylglycerol and phosphatidylglycerol, and the major polar lipid component of strain HDW19T was diphosphatidylglycerol. The genomic DNA G+C content of strains HDW11T and HDW19T were 72.1 and 37.2 mol%, respectively. The results of phylogenetic, phenotypic, chemotaxonomic and genotypic analyses suggest that strain HDW11T represents a novel species within the genus Brevilactibacter , and that strain HDW19T represents a novel species within the genus Weissella . We propose the name Brevilactibacter coleopterorum sp. nov. for strain HDW11T (=KACC 21335T=KCTC 49320T=JCM 33680T) and the name Weissella coleopterorum for strain HDW19T (=KACC 21347T=KCTC 43114T=JCM 33684T).
-
-
-
Phycicoccus flavus sp. nov., a novel endophytic actinobacterium isolated from branch of Kandelia candel
More LessA Gram-stain-positive, aerobic, non-motile, non-endospore-forming and rod-shaped actinobacterium, designated strain CMS6Z-2T, was isolated from a surface-sterilized branch of Kandelia candel collected from the Maowei Sea, Guangxi Zhuang Autonomous Region, PR China. Strain CMS6Z-2T grew at 10–37 °C (optimum, 37 °C), pH 6.0–9.0 (optimum, pH 7.0–8.0) and in the presence of 0–10.0 % (w/v) NaCl (optimum, 0–1.0 %). Strain CMS6Z-2T possessed meso-diaminopimelic acid as the diamino acid of the peptidoglycan and MK-8 (H4) as the predominant menaquinone. The major fatty acids were iso-C15 : 0, C16 : 0 and C18 : 1 ω9c. The polar lipids comprised diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and two unknown phospholipids. The G+C content of the genomic DNA was 74.1 mol%. Comparative analysis of 16S rRNA genes showed that strain CMS6Z-2T should be assigned to the genus Phycicoccus and its closest relative was Phycicoccus endophyticus IP6SC6T with 98.3 % similarity. Phylogenetic analyses based on 16S rRNA gene sequence and phylogenomic analysis based on core proteomes alignment revealed that strain CMS6Z-2T belonged to the genus Phycicoccus and formed a robust cluster with Phycicoccus endophyticus IP6SC6T within the genus Phycicoccus . The average nucleotide identity value and estimated digital DNA–DNA hybridization value between strain CMS6Z-2T and the type strain of Phycicoccus endophyticus were 81.5 and 23.9 %, respectively. On the basis of phylogenetic, phenotypic and chemotaxonomic characteristics, strain CMS6Z-2T represents a novel species of the genus Phycicoccus , for which the name Phycicoccus flavus sp. nov. is proposed. The type strain is CMS6Z-2T (=KCTC 49240T=CGMCC4.7549T).
-
- Archaea
-
-
Halosimplex halophilum sp. nov. and Halosimplex salinum sp. nov., isolated from saline soil and a salt mine
More LessA polyphasic study was undertaken to determine the taxonomic position of two halophilic archaeal strains, TH32T and YPL4T, isolated from saline soil and a salt mine in PR China, respectively. Strains TH32T and YPL4T both have two dissimilar 16S rRNA genes. The two strains exhibited sequence similarities of 91.5–95.5 % for 16S rRNA genes and 90.9 % for the rpoB′ gene. Sequence similarities of 16S rRNA genes and the rpoB′ gene between the two strains and the current four members of Halosimplex were 90.6–97.4 % and 91.4–93.5 %, respectively. Phylogenetic analysis revealed that the two strains formed different branches separating them from the current Halosimplex members. Several phenotypic characteristics differentiate strains TH32T and YPL4T from current Halosimplex members. The polar lipids of the two strains are phosphatidic acid, phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and four glycolipids. Two of the glycolipids are chromatographically identical to disulfated mannosyl glucosyl diether and sulfated mannosyl glucosyl diether, respectively, and the remaining two glycolipids are unidentified. The average nucleotide identity (ANI) and in silico DNA–DNA hybridization (DDH) values between the two strains and the current members of Halosimplex (ANI 80.4–89.2 % and in silico DDH 24.0–41.8 %) were much lower than the threshold values proposed as a species boundary, suggesting that the two strains represent novel species of Halosimplex . The values between the two strains (ANI 81.3 % and in silico DDH 24.9 %) were also much lower than the recommended threshold values, which revealed that the two strains represent two genomically different species of Halosimplex . These results showed that strains TH32T (=CGMCC 1.15190T=JCM 30840T) and YPL4T (=CGMCC 1.15329T=JCM 31108T) represent two novel species of Halosimplex , for which the names Halosimplex halophilum sp. nov. and Halosimplex salinum sp. nov. are proposed.
-
- Bacteroidetes
-
-
Elizabethkingia argenteiflava sp. nov., isolated from the pod of soybean, Glycine max
More LessSoybean pods, separated and enclosed from the outside environment, are considered a suitable place to find new microbes. A Gram-stain-negative, aerobic bacterium, bacterial strain (YB22T) was isolated from the pod of Glycine max (soybean) collected from a rural area in Republic of Korea and characterized by using polyphasic taxonomy. Cells of the strain were rod-shaped (approximately 0.4–0.6 µm wide and 4.0–5.0 µm long), non-flagellated and formed silver-yellow colonies. Cells grew at 25–35 °C (optimum, 28–30 °C), at pH 5.0–9.0 (optimum, pH 7.0) and with 0–2.0% NaCl (optimum, 0 % NaCl). 16S rRNA gene sequencing showed that strain YB22T was phylogenetically closest to the genus Elizabethkingia , and showed highest similarities to Elizabethkingia occulta G4070T (96.7 %), Elizabethkingia meningoseptica ATCC 13253T (96.7 %), Elizabethkingia miricola DSM 14571T (96.6 %), Elizabethkingia bruuniana G0146T (96.5 %), Elizabethkingia ursingii G4122T (96.4 %) and Elizabethkingia anophelis R26T (96.2 %). Average amino acid identity values between strain YB22T and other taxa in the genus Elizabethkingia were all above the threshold range of genus determination. Average nucleotide identity and digital DNA–DNA hybridization values between strain YB22T and other phylogenetic relatives were all found to be below the threshold range for species determination. The respiratory quinone of strain YB22T was menaquinone 6 (MK-6) and the predominant cellular fatty acids were iso-C15 : 0 (47.8 %) and iso-C17 : 0 3-OH (18.5 %). The major polar lipids were phosphatidylethanolamine, four unidentified aminolipids and three unidentified polar lipids. The phylogenetic analysis and physiological and biochemical data showed that strain YB22T should represent a novel species in the genus Elizabethkingia , for which the name Elizabethkingia argenteiflava sp. nov. is proposed. The type strain for this novel species is YB22T (=KCCM 43263T=JCM 32097T).
-
-
-
Croceimicrobium hydrocarbonivorans gen. nov., sp. nov., a novel marine bacterium isolated from a bacterial consortium that degrades polyethylene terephthalate
More LessA novel Gram-stain-negative, aerobic, gliding, rod-shaped and carotenoid-pigmented bacterium, designated A20-9T, was isolated from a microbial consortium of polyethylene terephthalate enriched from a deep-sea sediment sample from the Western Pacific. Growth was observed at salinities of 1–8 %, at pH 6.5–8 and at temperatures of 10–40 °C. The results of phylogenetic analyses based on the genome indicated that A20-9T formed a monophyletic branch affiliated to the family Schleiferiaceae , and the 16S rRNA gene sequences exhibited the maximum sequence similarity of 93.8 % with Owenweeksia hongkongensis DSM 17368T, followed by similarities of 90.4, 90.1 and 88.8 % with Phaeocystidibacter luteus MCCC 1F01079T, Vicingus serpentipes DSM 103558T and Salibacter halophilus MCCC 1K02288T, respectively. Its complete genome size was 4 035 598 bp, the genomic DNA G+C content was 43.2 mol%. Whole genome comparisons indicated that A20-9T and O. hongkongensis DSM 17368T shared 67.8 % average nucleotide identity, 62.7 % average amino acid identity value, 46.6% of conserved proteins and 17.8 % digital DNA–DNA hybridization identity. A20-9T contained MK-7 as the major respiratory quinone. Its major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phospatidylcholine; and the major fatty acids were iso-C15 : 0 (37.5 %), iso-C16 : 0 3-OH (12.4 %), and summed feature 3 (C16 : 1ω7c /C16 : 1ω6c, 11.6 %). Combining the genotypic and phenotypic data, A20-9T could be distinguished from the members of other genera within the family Schleiferiaceae and represents a novel genus, for which the name Croceimicrobium hydrocarbonivorans gen. nov., sp. nov. is proposed. The type strain is A20-9T (=MCCC 1A17358T =KCTC 72878T).
-
-
-
Bacteroides luhongzhouii sp. nov. and Bacteroides zhangwenhongii sp. nov., isolated from human faeces
Four unknown strains, characterized as Gram-stain-negative, strictly anaerobic, non-motile and rod-shaped, were isolated from fresh faeces of healthy humans in PR China. Pairwise sequence comparisons of the 16S rRNA genes showed that these isolates were separated into two clusters. Cluster I (strains HF-5141T and HF-106) was most closely related to Bacteroides xylanisolvens XB1AT (98.0–98.3 % similarity) and Bacteroides ovatus ATCC 8483T (97.3–97.5 %), whereas cluster II (strains HF-5287T and HF-5300) exhibited a similarity range of 96.8–97.0 % to Bacteroides finegoldii JCM 13345T, 96.7–96.9 % to Bacteroides faecis MAJ27T and 96.4–96.5 % to Bacteroides xylanisolvens XB1AT. The DNA G+C contents of type strains HF-5141T and HF-5287T were 41.5 and 42.6 mol%, respectively. These strains had anteiso-C15 : 0 as the major cellular fatty acid, MK-9 and MK-11 as the predominant respiratory quinones, and phosphatidylethanolamine, aminophospholipids and phospholipids as major polar lipids, which is typical for members of the genus Bacteroides . However, the average nucleotide identity and digital DNA–DNA hybridization values, accompanied by different phenotypic and biochemical characteristics, distinguished them from their corresponding closest relatives as well as from other recognized members of the genus Bacteroides . Therefore, strains HF-5141T and HF-5287T represent two novel species in the genus Bacteroides , for which the names Bacteroides luhongzhouii sp. nov. and Bacteroides zhangwenhongii sp. nov. are proposed, with HF-5141T (=CGMCC 1.16787T=GDMCC 1.1591T=JCM 33480T) and HF-5287T (=CGMCC 1.16724T=GDMCC 1.1590T=JCM 33481T) as type strains.
-
- Firmicutes and Related Organisms
-
-
Reclassification of Catabacter hongkongensis as Christensenella hongkongensis comb. nov. based on whole genome analysis
The genera Catabacter (family ‘Catabacteraceae’) and Christensenella (family Christensenellaceae ) are close relatives within the phylum Firmicutes . Members of these genera are strictly anaerobic, non-spore-forming and short straight rods with diverse phenotypes. Phylogenetic analysis of 16S rRNA genes suggest that Catabacter splits Christensenella into a polyphyletic clade. In an effort to ensure that family/genus names represent monophyletic clades, we performed a whole-genome based analysis of the genomes available for the cultured representatives of these genera: four species of Christensenella and two strains of Catabacter hongkongensis . A concatenated alignment of 135 shared protein sequences of single-copy core genes present in the included strains indicates that C. hongkongensis is indeed nested within the Christensenella clade. Based on their evolutionary relationship, we propose the transfer of Catabacter hongkongensis to the genus Christensenella as Christensenella hongkongensis comb. nov.
-
-
-
Paenibacillus foliorum sp. nov., Paenibacillus phytohabitans sp. nov., Paenibacillus plantarum sp. nov., Paenibacillus planticolens sp. nov., Paenibacillus phytorum sp. nov. and Paenibacillus germinis sp. nov., isolated from the Arabidopsis thaliana phyllosphere
More LessSix endospore-forming, Gram-stain-positive or variable, motile, rod-shaped, aerobic or facultatively anaerobic bacteria with different MALDI-TOF mass spectra (MS) were isolated from the phyllosphere of Arabidopsis thaliana plants grown in plant chambers after inoculation of surface sterilized seeds with a top soil microbial cell suspension. They were identified as members of the genus Paenibacillus through comparison with a commercial MALDI-TOF MS database and comparative 16S rRNA gene sequencing. Their genome sequences comprised multiple biosynthetic gene clusters and suggested they have unexplored biotechnological potential. Analyses of average nucleotide identity values between these strains and the type strains of their nearest neighbour species demonstrated that they represented a novel Paenibacillus species each. A detailed phenotypic comparison yielded distinctive biochemical characteristics for each of these novel species. We therefore propose to classify that these isolates into six novel species within genus Paenibacillus , for which we propose the names Paenibacillus foliorum sp. nov., Paenibacillus phytohabitans sp. nov., Paenibacillus plantarum sp. nov., Paenibacillus planticolens sp. nov., Paenibacillus phytorum sp. nov. and Paenibacillus germinis sp. nov., with strains LMG 31456T (=R-74617T=CECT 30138T), LMG 31459T (=R-74621T=CECT 30135T), LMG 31461T (=R-74618T=CECT 30133T), LMG 31457T (=R-74619T=CECT 30137T), LMG 31458T (=R-74620T=CECT 30136T) and LMG 31460T (=R-74622T=CECT 30134T) as the type strains, respectively.
-
-
-
Lactobacillus nasalidis sp. nov., isolated from the forestomach of a captive proboscis monkey (Nasalis larvatus)
Three strains (YZ01T, YZ02 and YZ03) of Gram-stain-positive, facultatively anaerobic rods were isolated from the forestomach contents collected from a captive male proboscis monkey (Nasalis larvatus) at Yokohama Zoo in Japan. Phylogenetic analysis of the 16S rRNA gene sequences revealed that these strains belonged to the genus Lactobacillus . Based on the sequence similarity of the 16S rRNA gene, Lactobacillus delbrueckii subsp. indicus JCM 15610T was the closest phylogenetic neighbour to YZ01T. Sequence analyses of two partial concatenated housekeeping genes, the RNA polymerase alpha subunit (rpoA) and phenylalanyl-tRNA synthase alpha subunit (pheS) also indicated that the novel strains belonged to the genus Lactobacillus . The average nucleotide identity and digital DNA–DNA hybridization (dDDH) between L. delbrueckii subsp. indicus and YZ01T were 85.9 and 31.4 %, respectively. The phylogenetic tree based on the whole genomic data of strains YZ01T, YZ02 and YZ03 suggested that these three strains formed a single monophyletic cluster in the genus Lactobacillus , indicating that it belonged to a new species. The DNA G+C content of strain YZ01T was 51.6 mol%. The major fatty acids were C16 : 0 and C18 : 1 ω9c. Therefore, based on phylogenetic, phenotypic and physiological evidence, strains YZ01T, YZ02 and YZ03 represent a novel species of the genus Lactobacillus , for which the name Lactobacillus nasalidis sp. nov. is proposed with the type strain YZ01T (=JCM 33769T=DSM 110539T).
-
-
-
Caproicibacterium amylolyticum gen. nov., sp. nov., a novel member of the family Oscillospiraceae isolated from pit clay used for making Chinese strong aroma-type liquor
Yang Gu, Xiaojun Zhu, Feng Lin, Caihong Shen, Yong Li, Ling Ao, Wenlai Fan, Cong Ren and Yan XuAn anaerobic, Gram-stain-positive, rod-shaped, motile and spore-forming bacterium, designated strain LBM18003T, was isolated from pit clay used for making Chinese strong aroma-type liquor. Growth occurred at 20–40 °C (optimum, 30–37 °C), pH 4.5–9.5 (optimum, pH 6.5–7.0) and in the presence of 0.0–1.0 % (w/v) sodium chloride (optimum, 0 %). The predominant fatty acids were C16:0, C14:0, C14:0 DMA and C16:0 3-OH, and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, two unidentified phospholipids and nine unidentified glycolipids. Phylogenetic analysis revealed that strain LBM18003T is a novel member of the family Oscillospiraceae . The 16S rRNA gene sequence similarities of strain LBM18003T to its two most closely related species were less than 94.5 % for distinguishing genera, i.e. closely related to Caproiciproducens galactitolivorans JCM 30532T (94.1 %) and Caproicibacter fermentans DSM 107079T (93.2 %). The genome size of strain LBM18003T was 2 996 201 bp and its DNA G+C content was 48.48 mol%. Strain LBM18003T exhibited 67.8 and 68.1% pairwise-determined whole-genome average nucleotide identity values to Caproiciproducens galactitolivorans JCM 30532T and Caproicibacter fermentans DSM 107079T, respectively; and showed 62.2 and 61.0 % the average amino acid identity values to Caproiciproducens galactitolivorans JCM 30532T and Caproicibacter fermentans DSM 107079T, respectively; and demonstrated 46.1 and 41.5 % conserved genes to Caproiciproducens galactitolivorans JCM 30532T and Caproicibacter fermentans DSM 107079T, respectively. The comparisons of 16S rRNA gene and genome sequences confirmed that strain LBM18003T represented a novel genus of the family Oscillospiraceae . Based on morphological, physiological, biochemical, chemotaxonomic, genotypic and phylogenetic results, strain LBM18003T represents a novel species of a novel genus of the family Oscillospiraceae , for which the name Caproicibacterium amylolyticum gen. nov., sp. nov. is proposed. The type strain is LBM18003T (=GDMCC 1.1626T=JCM 33783T).
-
-
-
Litoribacterium kuwaitense gen. nov., sp. nov., isolated from a Kuwait tidal flat
More LessA Gram-stain-positive, strictly aerobic, spore-forming, rod-shaped and non-motile bacterium designated strain SIJ1T was obtained from tidal flat sediment collected from the northern shore of Kuwait Bay, northwest of the Arabian Gulf. Strain SIJ1T grew optimally at 30 °C and pH 7–8 in the presence of 6 % (w/v) NaCl. The cell-wall peptidoglycan was based on meso-diaminopimelic acid and an unsaturated menaquinone with seven isoprene units (MK-7) was the predominant respiratory quinone. It contained anteiso-C15 : 0, iso-C16 : 0 and iso-C15 : 0 as the major fatty acids and ribose as the major whole-cell sugar. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, unidentified phospholipid, an unidentified glycolipid, phosphoglycolipid and an unidentified lipid. Phylogenetic analysis based on 16S rRNA genes revealed that SIJ1T showed a distinct evolutionary lineage within the Firmicutes. The DNA G+C content was 43.1 mol% and the full genome analysis for strain SIJ1T showed that it had a genome size of 3 989 945 bp and contained 4085 predicted protein-encoding genes. The SIJ1T annotated genome showed more stress resistance encoding genes in comparison to its closely related strains. The amino acid identity and average nucleotide identity data for the whole genome proved that strain SIJ1T does indeed represent a novel genus. The strain was distinguishable from the phylogenetically related genera through differences in several phenotypic properties. On the basis of the phenotypic, phylogenetic and genetic data, strain SIJ1T represents a novel genus and species in the family Bacillaceae, for which the name Litoribacterium kuwaitense gen. nov., sp. nov. is proposed. The type strain is SIJ1T (=DSM 28862T=LMG 28316T).
-
- Proteobacteria
-
-
Comamonas suwonensis sp. nov., isolated from stream water in the Republic of Korea
More LessA novel bacterial strain, EJ-4T, isolated from stream water collected at Seo-ho in Suwon, Republic of Korea, was characterized based on a polyphasic taxonomic approach. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain EJ-4T belonged to the genus Comamonas . The isolate is Gram-stain-negative, non-motile, aerobic, rod-shaped and forms pale yellow colonies on trypticase soy agar. The optimal growth of this strain was observed aerobically at 30 °C, pH 7 and 0.5 % NaCl. The major fatty acids were summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c; 39.7 %) and C16 : 0 (32.0 %). The G+C content of strain EJ-4T was 58.4mol %. The average nucleotide identity and digital DNA–DNA hybridization values between strain EJ-4T and Comamoas testosteroni were 91.8 and 31.2 %, respectively. The major polar lipids detected in the isolate were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The predominant isoprenoid quinone was ubiquinone-8. Based on the results of polyphasic taxonomic analysis of strain EJ-4T, we describe a novel species of the genus Comamonas , for which the name Comamonas suwonensis sp. nov. has been proposed, with EJ-4T (=KCTC 82074T=JCM 34179T=KEMB 1602-279T) as the type strain.
-
-
-
Geothermobacter hydrogeniphilus sp. nov., a mesophilic, iron(III)-reducing bacterium from seafloor/subseafloor environments in the Pacific Ocean, and emended description of the genus Geothermobacter
A novel mesophilic, anaerobic, mixotrophic bacterium, with designated strains EPR-MT and HR-1, was isolated from a semi-extinct hydrothermal vent at the East Pacific Rise and from an Fe-mat at Lō'ihi Seamount, respectively. The cells were Gram-negative, pleomorphic rods of about 2.0 µm in length and 0.5 µm in width. Strain EPR-MT grew between 25 and 45 °C (optimum, 37.5–40 °C), 10 and 50 g l−1 NaCl (optimum, 15–20 g l−1) and pH 5.5 and 8.6 (optimum, pH 6.4). Strain HR-1 grew between 20 and 45 °C (optimum, 37.5–40 °C), 10 and 50 g l−1 NaCl (optimum, 15–25 g l−1) and pH 5.5 and 8.6 (optimum, pH 6.4). Shortest generation times with H2 as the primary electron donor, CO2 as the carbon source and ferric citrate as terminal electron acceptor were 6.7 and 5.5 h for EPR-MT and HR-1, respectively. Fe(OH)3, MnO2, AsO4 3-, SO4 2-, SeO4 2-, S2O3 2-, S0 and NO3 - were also used as terminal electron acceptors. Acetate, yeast extract, formate, lactate, tryptone and Casamino acids also served as both electron donors and carbon sources. G+C content of the genomic DNA was 59.4 mol% for strain EPR-MT and 59.2 mol% for strain HR-1. Phylogenetic and phylogenomic analyses indicated that both strains were closely related to each other and to Geothermobacter ehrlichii , within the class δ- Proteobacteria (now within the class Desulfuromonadia ). Based on phylogenetic and phylogenomic analyses in addition to physiological and biochemical characteristics, both strains were found to represent a novel species within the genus Geothermobacter , for which the name Geothermobacter hydrogeniphilus sp. nov. is proposed. Geothermobacter hydrogeniphilus is represented by type strain EPR-MT (=JCM 32109T=KCTC 15831T=ATCC TSD-173T) and strain HR-1 (=JCM 32110=KCTC 15832).
-
-
-
Pseudomonas carbonaria sp. nov., isolated from charcoal
A beige-pigmented, oxidase-positive bacterial isolate, Wesi-4T, isolated from charcoal in 2012, was examined in detail by applying a polyphasic taxonomic approach. Cells of the isolates were rod shaped and Gram-stain negative. Examination of the 16S rRNA gene sequence of the isolate revealed highest sequence similarities to the type strains of Pseudomonas matsuisoli and Pseudomonas nosocomialis (both 97.3 %). Phylogenetic analyses on the basis of the 16S rRNA gene sequences indicated a separate position of Wesi-4T, which was confirmed by multilocus sequence analyses (MLSA) based on the three loci gyrB, rpoB and rpoD and a core genome-based phylogenetic tree. Genome sequence based comparison of Wesi-4T and the type strains of P. matsuisoli and P. nosocomialis yielded average nucleotide identity values <95 % and in silico DNA-DNA hybridization values <70 %, respectively. The polyamine pattern contains the major amines putrescine, cadaverine and spermidine. The quinone system contains predominantly ubiquinone Q-9 and in the polar lipid profile diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine are the major lipids. The fatty acid contains predominantly C16 : 0, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and summed feature 8 (C18 : 1ω7c and/or C18 : 1 ω6c). In addition, physiological and biochemical tests revealed a clear phenotypic difference from P. matsuisoli . These cumulative data indicate that the isolate represents a novel species of the genus Pseudomonas for which the name Pseudomonas carbonaria sp. nov. is proposed with Wesi-4T (=DSM 110367T=CIP 111764T=CCM 9017T) as the type strain.
-
-
-
Cupriavidus cauae sp. nov., isolated from blood of an immunocompromised patient
A novel Gram-stain-negative, facultative aerobic and rod-shaped bacterium, designated as MKL-01T and isolated from the blood of immunocompromised patient, was genotypically and phenotypically characterized. The colonies were found to be creamy yellow and convex. Phylogenetic analysis based on 16S rRNA gene and whole-genome sequences revealed that strain MKL-01T was most closely related to Cupriavidus gilardii LMG 5886T, present within a large cluster in the genus Cupriavidus . The genome sequence of strain MKL-01T showed the highest average nucleotide identity value of 92.1 % and digital DNA–DNA hybridization value of 44.8 % with the closely related species C. gilardii LMG 5886T. The genome size of the isolate was 5 750 268 bp, with a G+C content of 67.87 mol%. The strain could grow at 10–45 °C (optimum, 37–40 °C), in the presence of 0–10 % (w/v) NaCl (optimum, 0.5%) and at pH 6.0–10.0 (optimum, pH 7.0). Strain MKL-01T was positive for catalase and negative for oxidase. The major fatty acids were C16 : 0, summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c and/or C16 : 1 ω6c/C16 : 1 ω7c) and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The polar lipid profile consisted of phosphatidylglycerol, phosphatidylethanolamine, two unidentified phospholipids and one unidentified polar lipid. Moreover, strain MKL-01T contained ubiquinone Q-8 as the sole respiratory quinone. Based on its molecular, phenotypic and chemotaxonomic properties, strain MKL-01T represents a novel species of the genus Cupriavidus ; the name Cupriavidus cauae sp. nov. is proposed for this strain. The type strain is MKL-01T.
-
-
-
Permianibacter fluminis sp. nov., isolated from a freshwater stream
More LessA Gram-stain-negative, aerobic, non-motile and rod-shaped bacterium, designated as IMCC34836T, was isolated from a freshwater stream. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain IMCC34836T was most closely related to Permianibacter aggregans HW001T (of the family Pseudomonadaceae ) with 95.6 % sequence similarity and formed a robust clade with P. aggregans HW001T. The draft genome sequence of strain IMCC34836T was 4.4 Mbp in size with 59.1 mol% DNA G+C content. Average nucleotide identity and digital DNA–DNA hybridization values between strain IMCC34836T and P. aggregans HW001T were 71.2 and 22.0 %, respectively, indicating that the new strain represents a novel species. The strain contained iso-C15 : 0, summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c) and summed feature 9 (iso-C17 : 1 ω9c and/or C16 : 1 10-methyl) as the major fatty acids and harboured phosphatidylethanolamine, two unidentified aminophospholipids and three unidentified lipids as major polar lipids. The isoprenoid quinone detected in the strain was ubiquinone-8. Based on the phylogenetic and phenotypic characteristics, strain IMCC34836T is considered to represent a novel species of the genus Permianibacter , for which the name Permianibacter fluminis sp. nov. is proposed. The type strain is IMCC34836T (=KACC 21755T=NBRC 114416T).
-
Volumes and issues
-
Volume 73 (2023)
-
Volume 72 (2022 - 2023)
-
Volume 71 (2020 - 2021)
-
Volume 70 (2020)
-
Volume 69 (2019)
-
Volume 68 (2018)
-
Volume 67 (2017)
-
Volume 66 (2016)
-
Volume 65 (2015)
-
Volume 64 (2014)
-
Volume 63 (2013)
-
Volume 62 (2012)
-
Volume 61 (2011)
-
Volume 60 (2010)
-
Volume 59 (2009)
-
Volume 58 (2008)
-
Volume 57 (2007)
-
Volume 56 (2006)
-
Volume 55 (2005)
-
Volume 54 (2004)
-
Volume 53 (2003)
-
Volume 52 (2002)
-
Volume 51 (2001)
-
Volume 50 (2000)
-
Volume 49 (1999)
-
Volume 48 (1998)
-
Volume 47 (1997)
-
Volume 46 (1996)
-
Volume 45 (1995)
-
Volume 44 (1994)
-
Volume 43 (1993)
-
Volume 42 (1992)
-
Volume 41 (1991)
-
Volume 40 (1990)
-
Volume 39 (1989)
-
Volume 38 (1988)
-
Volume 37 (1987)
-
Volume 36 (1986)
-
Volume 35 (1985)
-
Volume 34 (1984)
-
Volume 33 (1983)
-
Volume 32 (1982)
-
Volume 31 (1981)
-
Volume 30 (1980)
-
Volume 29 (1979)
-
Volume 28 (1978)
-
Volume 27 (1977)
-
Volume 26 (1976)
-
Volume 25 (1975)
-
Volume 24 (1974)
-
Volume 23 (1973)
-
Volume 22 (1972)
-
Volume 21 (1971)
-
Volume 20 (1970)
-
Volume 19 (1969)
-
Volume 18 (1968)
-
Volume 17 (1967)
-
Volume 16 (1966)
-
Volume 15 (1965)
-
Volume 14 (1964)
-
Volume 13 (1963)
-
Volume 12 (1962)
-
Volume 11 (1961)
-
Volume 10 (1960)
-
Volume 9 (1959)
-
Volume 8 (1958)
-
Volume 7 (1957)
-
Volume 6 (1956)
-
Volume 5 (1955)
-
Volume 4 (1954)
-
Volume 3 (1953)
-
Volume 2 (1952)
-
Volume 1 (1951)
Most Read This Month
