1887

Abstract

A Gram-stain-positive, aerobic, non-motile, non-endospore-forming and rod-shaped actinobacterium, designated strain CMS6Z-2, was isolated from a surface-sterilized branch of collected from the Maowei Sea, Guangxi Zhuang Autonomous Region, PR China. Strain CMS6Z-2 grew at 10–37 °C (optimum, 37 °C), pH 6.0–9.0 (optimum, pH 7.0–8.0) and in the presence of 0–10.0 % (w/v) NaCl (optimum, 0–1.0 %). Strain CMS6Z-2 possessed -diaminopimelic acid as the diamino acid of the peptidoglycan and MK-8 (H) as the predominant menaquinone. The major fatty acids were iso-C, C and C 9. The polar lipids comprised diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and two unknown phospholipids. The G+C content of the genomic DNA was 74.1 mol%. Comparative analysis of 16S rRNA genes showed that strain CMS6Z-2 should be assigned to the genus and its closest relative was IP6SC6 with 98.3 % similarity. Phylogenetic analyses based on 16S rRNA gene sequence and phylogenomic analysis based on core proteomes alignment revealed that strain CMS6Z-2 belonged to the genus and formed a robust cluster with IP6SC6 within the genus . The average nucleotide identity value and estimated digital DNA–DNA hybridization value between strain CMS6Z-2 and the type strain of were 81.5 and 23.9 %, respectively. On the basis of phylogenetic, phenotypic and chemotaxonomic characteristics, strain CMS6Z-2 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CMS6Z-2 (=KCTC 49240=CGMCC4.7549).

Funding
This study was supported by the:
  • CAMS innovation Fund for Medical Sciences (Award 2017-12M-1-012)
    • Principle Award Recipient: Cheng-HangSun
  • CAMS innovation Fund for Medical Sciences (Award CAMS 2017-12M-B&R-08)
    • Principle Award Recipient: Cheng-HangSun
  • Guizhou Provincial Science and Technology Foundation (Award Qian Ke He Jichu[2019]1347)
    • Principle Award Recipient: TuoLi
  • National Natural Sciences Foundation of China (Award 81960642)
    • Principle Award Recipient: LiTuo
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004794
2021-04-28
2021-05-17
Loading full text...

Full text loading...

References

  1. Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 1997; 47:479–491 [CrossRef]
    [Google Scholar]
  2. Lee SD. Phycicoccus jejuensis gen. nov., sp. nov., an actinomycete isolated from seaweed. Int J Syst Evol Microbiol 2006; 56:2369–2373 [CrossRef][PubMed]
    [Google Scholar]
  3. Zhang J-Y, Liu X-Y, Liu S-J. Phycicoccus cremeus sp. nov., isolated from forest soil, and emended description of the genus Phycicoccus. Int J Syst Evol Microbiol 2011; 61:71–75 [CrossRef][PubMed]
    [Google Scholar]
  4. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol 2018; 9:9 [CrossRef][PubMed]
    [Google Scholar]
  5. Kang J-P, Kim Y-J, Nguyen N-L, Hoang V-A, Farh ME-A et al. Phycicoccus ginsengisoli sp. nov., isolated from cultivated ginseng soil. Int J Syst Evol Microbiol 2016; 66:5320–5327 [CrossRef][PubMed]
    [Google Scholar]
  6. Lochhead AG. Two new species of Arthrobacter requiring respectively vitamin B12 and the terregens factor. Arch Mikrobiol 1958; 31:163–170 [CrossRef]
    [Google Scholar]
  7. Ishikawa T, Yokota A. Reclassification of Arthrobacter duodecadis Lochhead 1958 as Tetrasphaera duodecadis comb. nov. and emended description of the genus Tetrasphaera. Int J Syst Evol Microbiol 2006; 56:1369–1373 [CrossRef][PubMed]
    [Google Scholar]
  8. Hanada S, Liu W-T, Shintani T, Kamagata Y, Nakamura K. Tetrasphaera elongata sp. nov., a polyphosphate-accumulating bacterium isolated from activated sludge. Int J Syst Evol Microbiol 2002; 52:883–887 [CrossRef][PubMed]
    [Google Scholar]
  9. Liu S-W, Xu M, Tuo L, Li X-J, Hu L et al. Phycicoccus endophyticus sp. nov., an endophytic actinobacterium isolated from Bruguiera gymnorhiza. Int J Syst Evol Microbiol 2016; 66:1105–1111 [CrossRef][PubMed]
    [Google Scholar]
  10. Li F, Gao C, Zhu L, Yu L, Qin M et al. [Diversity and cytotoxic activity of endophytic bacteria isolated from Sonneratia apetala of Maowei Sea]. Wei Sheng Wu Xue Bao 2016; 56:689–697[PubMed]
    [Google Scholar]
  11. Li W-J, Xu P, Schumann P, Zhang Y-Q, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007; 57:1424–1428 [CrossRef][PubMed]
    [Google Scholar]
  12. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  13. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  14. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [CrossRef]
    [Google Scholar]
  15. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  16. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  17. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  18. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  19. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 2001; 29:2607–2618 [CrossRef][PubMed]
    [Google Scholar]
  20. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [CrossRef][PubMed]
    [Google Scholar]
  21. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997; 25:955–964 [CrossRef][PubMed]
    [Google Scholar]
  22. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [CrossRef][PubMed]
    [Google Scholar]
  23. Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL et al. Rfam: updates to the RNA families database. Nucleic Acids Res 2009; 37:D136–D140 [CrossRef][PubMed]
    [Google Scholar]
  24. Nawrocki EP, Kolbe DL, Eddy SR. Infernal 1.0: inference of RNA alignments. Bioinformatics 2009; 25:1335–1337 [CrossRef][PubMed]
    [Google Scholar]
  25. Avram O, Rapoport D, Portugez S, Pupko T. M1CR0B1AL1Z3R-a user-friendly web server for the analysis of large-scale microbial genomics data. Nucleic Acids Res 2019; 47:W88–W92 [CrossRef][PubMed]
    [Google Scholar]
  26. Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P et al. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 2011; 39:W339–W346 [CrossRef][PubMed]
    [Google Scholar]
  27. Pinski A, Zur J, Hasterok R, Hupert-Kocurek K. Comparative genomics of Stenotrophomonas maltophilia and Stenotrophomonas rhizophila revealed characteristic features of both species. Int J Mol Sci 2020; 21:4299 [CrossRef][PubMed]
    [Google Scholar]
  28. Taghavi S, van der Lelie D, Hoffman A, Zhang Y-B, Walla MD et al. Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638. PLoS Genet 2010; 6:e1000943 [CrossRef][PubMed]
    [Google Scholar]
  29. Bremer E, Krämer R. Responses of microorganisms to osmotic stress. Annu Rev Microbiol 2019; 73:313–334 [CrossRef][PubMed]
    [Google Scholar]
  30. Csonka LN. Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 1989; 53:121–147 [CrossRef][PubMed]
    [Google Scholar]
  31. Mandon K, Osterås M, Boncompagni E, Trinchant JC, Spennato G et al. The Sinorhizobium meliloti glycine betaine biosynthetic genes (betlCBA) are induced by choline and highly expressed in bacteroids. Mol Plant Microbe Interact 2003; 16:709–719 [CrossRef][PubMed]
    [Google Scholar]
  32. Boncompagni E, Dupont L, Mignot T, Osteräs M, Lambert A et al. Characterization of a snorhizobium meliloti ATP-binding cassette histidine transporter also involved in betaine and proline uptake. J Bacteriol 2000; 182:3717–3725 [CrossRef][PubMed]
    [Google Scholar]
  33. Avonce N, Mendoza-Vargas A, Morett E, Iturriaga G. Insights on the evolution of trehalose biosynthesis. BMC Evol Biol 2006; 6:109 [CrossRef][PubMed]
    [Google Scholar]
  34. Kaasen I, Falkenberg P, Styrvold OB, Strøm AR. Molecular cloning and physical mapping of the otsBA genes, which encode the osmoregulatory trehalose pathway of Escherichia coli: evidence that transcription is activated by katF (AppR). J Bacteriol 1992; 174:889–898 [CrossRef][PubMed]
    [Google Scholar]
  35. Scheuring S, Ringler P, Borgnia M, Stahlberg H, Müller DJ et al. High resolution AFM topographs of the Escherichia coli water channel aquaporin Z. Embo J 1999; 18:4981–4987 [CrossRef][PubMed]
    [Google Scholar]
  36. Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A. Role of plant growth promoting rhizobacteria in agricultural sustainability-A review. Molecules 2016; 21:573 [CrossRef][PubMed]
    [Google Scholar]
  37. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  38. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [CrossRef]
    [Google Scholar]
  39. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [CrossRef]
    [Google Scholar]
  40. Kelly KL. Inter-Society Color Council-National Bureau of Standards Color name Charts illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  41. Xu P, Li W-J, Tang S-K, Zhang Y-Q, Chen G-Z et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
  42. Cappuccino JG, Sherman N. Microbiology: a Laboratory Manual, 6th ed. San Francisco: Benjamin Cummings Pearson Education; 2002
    [Google Scholar]
  43. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978; 24:710–715 [CrossRef][PubMed]
    [Google Scholar]
  44. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [CrossRef]
    [Google Scholar]
  45. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  46. Guo L, Tuo L, Habden X, Zhang Y, Liu J et al. Allosalinactinospora lopnorensis gen. nov., sp. nov., a new member of the family Nocardiopsaceae isolated from soil. Int J Syst Evol Microbiol 2015; 65:206–213 [CrossRef][PubMed]
    [Google Scholar]
  47. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477 [CrossRef][PubMed]
    [Google Scholar]
  48. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI inc; 1990
    [Google Scholar]
  49. Tuo L, Yan X-R, Li F-N, Bao Y-X, Shi H-C et al. Brachybacterium endophyticum sp. nov., a novel endophytic actinobacterium isolated from bark of Scutellaria baicalensis Georgi. Int J Syst Evol Microbiol 2018; 68:3563–3568 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004794
Loading
/content/journal/ijsem/10.1099/ijsem.0.004794
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error